
1091

Fuzzy state noise-driven Kalman filter for sensor fusion
S Chauhan1, C Patil2, M Sinha2∗, and A Halder2

1Department of Electronic and Electrical Engineering, IIT Kharagpur, Kharagpur, West Bengal, India
2Department of Aerospace Engineering, IIT Kharagpur, Kharagpur, West Bengal, India

The manuscript was received on 19 February 2009 and was accepted after revision for publication on 21 July 2009.

DOI: 10.1243/09544100JAERO536

Abstract: This article proposes a fuzzy state noise-driven Kalman filter for sensor fusion to
estimate the instantaneous position and attitude of an unmanned air vehicle for navigation
purpose. The formulation of the state noise covariance matrix has been carried out using the
fuzzy regression method applied to the state residuals. This algorithm has been embedded in the
real-time hardware and tested for performance on ground and not in real flight. A comparative
study between the proposed and conventional algorithm illustrates its efficacy.
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1 INTRODUCTION

This is a fact that while solving an engineering prob-
lem, hardware implementation can throw light on
areas where theory and simulation lack [1]. Many
engineering problems involve constraints such as syn-
chronization, computational complexity, size, weight,
power, cost, saturation, and so on, which are either
knowingly neglected in theoretical description for the
sake of mathematical simplicity or are too resource-
demanding to run a meaningful simulation. In addi-
tion, to assess the credibility of the theory itself, hard-
ware experiments also provide an avenue to testify the
assumptions that lay the foundation of the theory.

At the heart of sensor fusion lies Kalman filter. A
number of implementations to estimate the states of
a system, either in simulation or on hardware, have
been reported in various literatures. A gimballed iner-
tial navigation system (INS) with nine state estimation
using Kalman filter has been reported in reference
[2]. Large number of states estimation using Kalman
filter has been described in references [3] to [6]. An
implementation for an air-data-based dead reckoning
system for the unmanned air vehicle (UAV) Nishant
has been described in reference [7]. Large-scale state
estimation using Kalman filter has been described
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in references [8] to [12]. In reference [13], a fuzzy-
based sensor fusion technique has been reported,
while in reference [14], INS and global positioning
system (GPS) integration using Kalman filter have
been worked out. Unscented Kalman filter and its
variants have been worked out in references [15]
to [18]. The past research in aircraft sensor fusion
algorithm has primarily strived for better accuracy,
either by incorporating sophisticated hardware to
improve arithmetic precision, or by implementing a
filtering scheme with higher algorithmic complexity.
Neither of these approaches led to a cost-effective
solution from system integration point of view.

The main objective of this article is to overcome
this shortcoming by designing a novel sensor fusion
algorithm taking sensor uncertainty and ambiguity
into account in a way that is realizable in low-cost
hardware platform, in real time, for a UAV. A state
noise-driven extended Kalman filter (EKF) has been
implemented for the real-time state estimation of a
UAV using sensor fusion. The state estimates obtained
from the embedded sensor fusion algorithm proposed
in this article can also be used to construct artificial
sensor feedbacks for pan-tilt stabilization of the cam-
era and sonar altimeter platform affixed to the UAV.
The aim of the work reported here is to design and
implement a sensor fusion algorithm on a hardware
platform, in real time, for a UAV. However, the current
work shows the performance of the algorithm imple-
mented on hardware and tested on ground, which is a
precursor to the final flight testing.
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2 ATTITUDE MEASUREMENT

The complete implementation can be bifurcated into
three steps as listed below.

1. Sensor fusion for inertial measurement unit (IMU)
and GPS data computes the states of the UAV such
as position (x, y, z) and attitude (φ, θ , ψ).

2. Elimination of divergence in the filter.
3. Implementation on hardware that involves various

sensors interfaced with the on-board microcon-
troller of the UAV to acquire flight data.

The data coming from these sensors are, in gen-
eral, noise corrupted. Hence, it is imperative to have
an algorithm that can yield realistic, unique, and
optimal values of the desired quantities describing
the state of the system by fusing the data coming
out from various sensors while meeting the time
constraint. This article proposes such an algorithm
and demonstrates the efficacy of it through real-
time hardware-in-loop-simulation (HILS). Generally,
attitude is estimated from directly measurable vari-
ables. Using carrier-phase GPS signal from three GPS
antenna, with a known geometry, attitude estimation
can be obtained [19, 20]. After the resolution of phase
ambiguity, phase differences between the antennas
can be worked out and attitude can be estimated.
However, the estimation accuracy increases with the
increase in the baseline length between the antennas,
which poses constraint for the small UAVs. Gebre-
Egziabher et al. [21] proposed an ultra short baseline
solution (∼36 cm baseline), but even this is too large
and heavy for small UAVs [22]. Another promising
method is to use vector measurements of the magnetic
and gravitational fields and then solve a set of non-
linear equations using optimization methods to come
up with an attitude measurement [23, 24]. Akella et al.
[25] formulated a feedback law that directly regulates
the attitude with only gyro and inclinometer measure-
ments. The attitude estimation follows the following
steps:

(a) obtain three consecutive GPS position measure-
ments;

(b) difference the three GPS measurements to obtain
two velocity measurements;

(c) average the two velocity measurements to give
average velocity over 2 s;

(d) calculate the track angle ψ from velocity as ψ =
tan−1(ẏ/ẋ);

(e) difference the GPS calculated velocities to obtain
a GPS acceleration measurement aGPS;

(f) average the accelerometers over the same 2 s as
the GPS velocity is calculated to obtain a;

(g) calculate θ and φ using the accelerometers and the
GPS acceleration rotated by ψ from corresponding
equations [26].

3 SENSOR FUSION USING EXTENDED KALMAN
FILTER

This section gives a summary of attitude filtering
and position filtering, respectively, using EKF. Estima-
tion using EKF involves time updates and measure-
ment updates as described below. The notation of
the symbols used is standard and can be referred to
reference [3].

3.1 Attitude filtering using EKF

Initialize with

⇀̂

x0 = E[�x0] (1)

P0 = E[(⇀

x0 − ⇀̂

x0)(
⇀

x0 − ⇀̂

x0)
T (2)

Time update

⇀̂

qk+1 = ⇀̂

qk + Tsampling�(
⇀

ωk − ⇀̂

bk)
⇀̂

qk (3)

⇀̂

qk+1 =
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qk+1

‖⇀̂

qk+1‖
(4)

⇀̂

bk+1 = ⇀̂

bk (5)

Pk+1 = Pk + Tsampling(AkPk + PkAT
k + Qk) (6)

Measurement update

Kk = PkCT
k(CkPkCT

k + Rk)
−1 (7)
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Pk+1 = (I − KkCk)Pk (10)

3.2 Position filtering using EKF

State

⇀

x = [
x y z

]T
(11)

Time update

⇀̂

xk+1 = ⇀̂

xk + Tsampling

⎛
⎝DCMT

⎡
⎣

VP

0
0

⎤
⎦

⎞
⎠ (12)

Pk+1 = Pk + Tsampling(GkQkGT
k) (13)

Measurement update

Kk = Pk(Pk + Rk)
−1 (14)

�̂xk+1 = ⇀̂

xk + Kk(
⇀

zk − ⇀̂

xk) (15)

Pk+1 = (I − Kk)Pk (16)
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Here, Gk is the partial derivative of the dynamics
with respect to each of the inputs. Formulation of Gk

can be found in reference [26]. � is written as

�(
⇀
ω) =

⎡
⎢⎢⎣

0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0

⎤
⎥⎥⎦ (17)

4 FUZZY STATE NOISE-DRIVEN FILTER

At times the EKF may diverge because of system mod-
elling, finite arithmetic, and round off errors. Various
divergence control strategies can be found in refer-
ence [27] along with the outline of the algorithm. The
objective of this algorithm is to guarantee the pos-
itive definiteness of the state covariance matrix (P)
by suitably formulating the process noise covariance
matrix (Q).

4.1 Formulation of process noise covariance
matrix

To facilitate computation, it is a common practice
to diagonalize Q, which has been proposed to be
formulated as

Qij = |�⇀

x�
⇀̇

x|�tδij (18)

In order to calculate the derivative of the state resid-
uals, the following method has been proposed by the
authors.

4.2 Proposed filter algorithm

A linear fuzzy regression model with suitable size of the
moving window was adopted to plot the state residue
curve. On a sample dataset, this provided better result
than the least square plot with a moving window [27].
Hence, the linear fuzzy regression with a moving win-
dow was applied for the case of non-fuzzy data. In this
algorithm, the state residual vector is formulated using
linear fuzzy regression as

�



x = f (t ,



A) = 


A0 + 


A1t1 + 


A2t2 + · · · + 


Antn (19)

where



Ai is the ith fuzzy coefficient, a fuzzy number
(contrary to conventional crisp constant). Since each
fuzzy number can be characterized by its membership
function, each




Ai was expressed as an isosceles trian-
gular membership function such that ci is the spread
(half-width of the base) and pi is the mid point of
the base. Thus the aim of the fuzzy regression prob-
lem considered here is to determine a family of such
symmetric triangles representing all the coefficients in
the linear fuzzy regression formula. It can be shown
that the corresponding symmetric triangular fuzzy

membership function for the fuzzified state resid-
ual vector has mid-point and spread of

∑n
i=1 piti and∑n

i=1 ci|ti|, respectively [27]. Now one needs to find the
fuzzy coefficients such that the spread of the fuzzy out-
put is minimized. Tanaka et al. [28] formulated the
objective function for this optimization problem as

Of = min

⎧⎨
⎩mc0 +

m∑
j=1

n∑
i=1

citij

⎫⎬
⎭ (20)

where t0j = 1∀j = 1, 2, . . . , m. This optimization prob-
lem can be viewed as the minimization of total fuzzi-
ness (hence ambiguity) of the fuzzy linear model. This
objective function Of needs to be minimized sub-
jected to two inequality constraints (derived by Tanaka
et al. [28])

xj �
n∑

i=0

pitij − (1 − h)

n∑
i=0

citij (21)

xj �
n∑

i=0

pitij + (1 − h)

n∑
i=0

citij (22)

Equations (20) and (21) represent total 2m con-
straints. Now this becomes a linear programming
problem, which must be solved to find the mid points
and spreads of the fuzzy coefficients. The authors
used the simplex method to solve this constrained
optimization problem.

5 HARDWARE ARCHITECTURE

The hardware platform consists of two printed cir-
cuit boards (PCBs), namely sensor interface card and
processor card arranged in a dual stack configuration
connected by 88 pins (Fig. 1). The upper PCB is the
sensor interface card which takes the sensor outputs
and sends them to the lower PCB (i.e. the processor
card). In addition to interfacing the sensors, the sen-
sor interface card also synchronizes the bit rate of all
sensors to the processing speed of the microcontroller
(9600 bps).

The 32-bit microcontroller used in this custom-
designed board is Motorola MC68332. Its features
include a 32 bit CPU (CPU32), a system integration
module, a time processor unit (TPU), a queued serial
module, 2 kB static RAM with TPU emulation capabil-
ity, a maximum system clock speed of 20.97 MHz, and
a high density complementary metal-oxide semicon-
ductor architecture to make low power consumption
of the micro controller unit. Among various sensors
interfaced with the processor card (via sensor inter-
face card), IMU and GPS are of particular interest as the
proposed algorithm fuses data coming from the two.
The IMU consists of three gyros (ADXRS150) and three
accelerometers (ADXL105). The gyros measure body
angular velocities and the accelerometers measure
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Fig. 1 Sensor interface card and processor card with
sensors

translational accelerations. The GPS gives spatial posi-
tion of the board.

6 HARDWARE IN LOOP SIMULATION

In actual hardware implementation, driving noise
covariance matrix Q has been formulated with and
without fuzzy state noise covariance (using random
noise in the same range). The comparative results
for real-time runs bring forth the superiority of the
proposed algorithm.

6.1 Hardware specific consideration

Since measurement update occurs once in a second
(GPS frequency is 1 Hz), in order to make a better esti-
mate, the conventional – once time update, then only
measurement update – philosophy was modified. In
fact, time update (predictor step) is carried out for
three time steps, and then one measurement update
is done (i.e. at the fourth time step). Proper algorithm
for matrix inversion and computation of trignometric
functions were implemented to reduce the computa-
tional burden. The number of nested loops in the code
was also minimized.

6.2 The effect of the magnitude of attitude on
tracking performance

For a large set of pitch angles, tracking performance
was compared and the performance was found to
be satisfactory (<1 per cent error). In evaluating

tracking performance, reference measurement of atti-
tude was assumed to be the constructed measurement
as explained in section 2. Figures 2 to 4 show the
tracking performance for three different pitch angles,
namely 4.4◦, 17.4◦, and 28.2◦.

Therefore, it can be concluded that the magnitude
of the angle does not have a significant effect as far

Fig. 2 Tracking performance for 4.4◦ pitch angle

Fig. 3 Tracking performance for 17.4◦ pitch angle

Fig. 4 Tracking performance for 28.2◦ pitch angle
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Fig. 5 Steady-state error comparisons for three different
pitch angles

as tracking performance is concerned. However, when
steady-state errors for three different pitch angles were
plotted together, it turns out that smaller the mag-
nitude of the angle, the larger will be the deviations
from the steady-state value. Figure 5 illustrates this
fact (three representative pitch angles were chosen to
be 29.1◦, 15.7◦, and 3.05◦).

6.3 The effect of the driving noise

The objective of this study was to investigate how the
formulation of process noise covariance matrix (Q)
affects the performance of the filter. Hence for three
different pitch angles (14.1◦, 35.1◦, and 44.6◦), the fuzzy
state noise-driven EKF and conventional EKF code
(with square of the random numbers as the entries of
the diagonal Q matrix) were run simultaneously. The
results are plotted in Figs 6 to 8, where the percentage

Fig. 6 Effect of driving noise for 14.1◦ pitch angle

Fig. 7 Effect of driving noise for 35.1◦ pitch angle

Fig. 8 Effect of driving noise for 44.6◦ pitch angle

estimation errors (with respect to the measurements)
were plotted against time.

Some general observations can be made from Figs 6
to 8. It can be noted that the maximum overshoot in the
transient state (corresponding to changing the angle)
for state error formulation is much larger compared to
that with random noise. However, the settling time is
significantly larger for the case when random noise is
used. Also, as it is evident from the last three plots,
random noise formulation has a slight tendency of
overshoot in steady state too (i.e. the steady-state error
value for random noise is higher). It can be noted that,
in all three plots above, the random noise curve slowly
captures the state noise curve from bottom and has a
tendency to cross it to a positive value.

To investigate it further, steady-state errors
(after convergence) were magnified for both the
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Fig. 9 Effect of driving noise after the filter has con-
verged (magnified steady-state comparison)

formulations for the same magnitude of pitch angle
(45.7◦). This (Fig. 9) confirms the speculation made in
the earlier paragraph. The steady-state oscillations are
much larger in amplitude for random noise formula-
tion. This probably sheds light on why fuzzy state noise
is better than the random noise formulation.

7 CONCLUSIONS

Real-time hardware implementation of a fuzzy state
noise-driven EKF for sensor fusion is presented in
this article with detailed results of HILS. The results
showed that the proposed algorithm yields faster
convergence with better steady-state performance
compared to conventional EKF.
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APPENDIX

Notation

Ak state transition matrix at time tk
⇀

bk bias vector at time tk

Ck observation matrix at time tk

DCM direction cosine matrix
E[·] expectation operator
Gk state noise gain matrix at time tk

I identity matrix
Kk Kalman gain matrix at time tk
⇀

Pk state covariance matrix at time tk
⇀

qk attitude quaternion at time tk

Qk state noise covariance matrix at
time tk

Rk observation noise covariance matrix at
time tk

Tsampling sampling time
Vp velocity
x, y, z position coordinates
ẋ, ẏ, ż rate of change of position coordinates
⇀

x0,
⇀

x state vector at time t0 and t ,
respectively

δij Kronecker delta function
�

⇀

x state residual vector

�
⇀̇

x derivative of the state residual vector
φ, θ , ψ bank, elevation, and azimuth angles,

respectively
⇀

ω angular rate vector in body coordinates
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