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A framework is provided for the propagation of uncertainty in planetary entry, descent, and landing. The

traditionalMonte–Carlo based dispersion analysis is overly resource-expensive for suchhigh-dimensional nonlinear

systems and does not provide any methodical way to analyze the effect of uncertainty for mission design. It is shown

that propagating the density function through Liouville equation is computationally attractive and suitable for

further statistical analysis. Comparative simulation results are provided to bring forth the efficacies of the proposed

method. Examples are given from the entry, descent, and landing domain to illustrate how one can retrieve statistical

information of interest from an analyst’s perspective.

Nomenclature

Bc = ballistic coefficient
CL
CD

= lift-to-drag ratio

F = augmented dynamics vector
f = dynamics vector
g = acceleration due to gravity GM

�R0�h�2
, where GM is the

Gravitational constant for Mars
h = altitude
ns = number of states
np = number of parameters
p = parameter vector
R0 = mean equatorial radius of Mars
t = time
V = Mars-relative velocity
vc = normalizing velocity constant �

����
�
R0

q
, where �� gR2

0

X = augmented state vector
x = state vector
� = flight-path angle
� = latitude
� = longitude
� = Martian atmospheric density
�0 = reference-level density
� = bank angle
’ = probability density function
� = velocity azimuth angle measured from North
� = trace of the Jacobian of the dynamics
� = rotational angular velocity for Mars

Subscript

i = variable number

I. Introduction

W ITH the need to develop next generation entry, descent, and
landing (EDL) technologies for planetary exploration, quan-

tification of uncertainties have become a major technical challenge
for space system simulations. In particular, Mars EDL technologies

arewitnessing a paradigm shift as we strive for increasing the landing
mass capability at a higher surface elevation (lower atmospheric
density) while improving the landing accuracy. Future missions
including Mars Science Laboratory (MSL), Mars Sample Return
(MSR), and Astrobiology Field Laboratory (AFL) are pushing the
EDL technology limits toward the aforesaid directions to pave the
way for human exploration missions. As pointed out in [1,2], from
1976 to 2008, all six NASA missions which landed successfully on
Mars, were based on Viking-era EDL technologies characterized by
landing mass of less than 600 kg, landing elevation of less than
�1:4 km Mars Orbiter Laser Altimeter (MOLA) reference with
landing footprint uncertainty in hundreds of km. In fact, they all had
similar design attributes, e.g., 70� sphere-cone aeroshell, supersonic
Disk-Gap-Band (DGB) parachutes with diameter less than the
Viking 16mdesign andSLA-561V thermal protection system (TPS).
In contrast, the MSL mission, scheduled to launch in 2011, has a
higher landingmass, higher surface elevation for landing, an order of
magnitude improvement in landing footprint uncertainty, a larger
DGB parachute and a new TPS. Braun and Manning [1] have listed
the probable future directions of EDL technological pursuits and
challenges thereof. To achieve such technical readiness level,
development of these new generation of landers will require very
high-fidelity simulations enabling the assessment of risk and
incorporating that knowledge for the purpose of robust mission
design supported by statistical verification and validation. More
precisely, a probabilistic quantification of being inside or outside
some predefined operational safetymargin is sought that can account
the associated uncertainties in initial conditions and system
parameters resulting off-nominal trajectories.

Traditionally, a Monte–Carlo (MC) based dispersion analysis is
carried out for this purpose where one simulates a large number of
trajectories for randomly sampled initial conditions and parameter
values. If most or all of such trajectories remain inside the safety
margin, one can at best hope for the system safety and reliability
without any quantitative guarantee whatsoever. Usually the
engineers responsible for subsystem models identify the uncertainty
bounds and decide about the sampling strategy based on their
experience. Clearly, brute force MC simulations are not the best
approach for such mission critical uncertainty analysis. Moreover,
for high-dimensional and nonlinear dynamics like spacecraft EDL,
MC simulations are tremendously expensive as one strives to
simulate individual trajectories one by one for uncertainties in
hundreds of states and parameters and their combinations. In spite of
all these drawbacks, almost all spacemission uncertainty analysis are
donewithMC simulations includingMars Pathfinder [3], METEOR
[4] recovery module, Stardust [5] comet sample return capsule, Mars
Microprobe [6], MSP 2001 Orbiter and Lander [7] and to-be-
launched MSL [8] mission. In fact, many important decisions in
mission design have been historically driven byMCbased dispersion
analysis. Mars landing site selection [9], design of the Pathfinder
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aeroshell thermal protection system [10] and parachute deployment
algorithm [3] are examples for the same. This heavy bias towardMC
simulations amongEDL analysis practitioners is partly due to its ease
of implementation and partly due to the scarcity of alternative
analysis methods. Two primary EDL simulation frameworks which
are seeing extensive use at present, are NASA Langley Research
Center’s Program to Optimize Simulated Trajectories II (POST2)
[11] andNASA Jet Propulsion Laboratory’s Dynamics Simulator for
Entry, Descent and Surface Landing (DESENDS) [12]. Both of these
two presently rely on MC based dispersion analysis for EDL
simulations.

The limitations of MC based dispersion analysis are well-known
[13] (see Ch. 1), i.e., poor computational scalability and lack of any
coherent methodology to quantify the evolution of uncertainty in a
statistically consistent manner. Consequently, researchers have
pursued different methods for uncertainty propagation in dynamical
systems in general while few of them have been attempted in EDL
domain. In this paper, we will classify these methods in two broad
categories: parametric (where one evolves the statistical moments)
and nonparametric propagation of uncertainty (where one evolves
the full probability density function, or PDF). There have been three
major directions in parametric propagation of uncertainty as listed
below.

1) The simplest method in this category assumes a linear state

space description of the form _x� Ax, x 2 Rn. With the initial
condition uncertainty assumed to be Gaussian, one then sets for
propagating the mean ( �x) and covariance (P) matrix by the well-

known equations _�x� A �x and _P� ATP� PA. The computational
efficiency of this method mainly depends on the efficiency of the
numerical algorithm to integrate the covariance propagation equation
and in some cases,may even performworse thanMC [14]. Of course,
themajor drawback is that a typical EDL systemwith large number of
states involving highly nonlinear dynamicswith non-Gaussian initial
joint PDF is too far to fit in this framewrok. Nevertheless, this has
been attempted in EDL problem (see [14]).

2) In polynomial chaos (PC) method, one derives a set of
deterministic ordinary differential equations (ODEs) using either
Galerkin projection [15] or the stochastic collocation [16] and then
solves that set of ODEs. Although this method can handle nonlinear
dynamics with non-Gaussian uncertainties, one ends up solving a
higher dimensional state space problem, which becomes intractable
for a realistic EDL simulation. Further, the method is difficult to
apply for large nonlinearities [17] and computational performance
degrades (due to finite-dimensional approximation of the probability
space) if long-term statistics is desired. Recently, this method has
been applied to the EDL domain [18].

3) Another method in this category is called the direct quadrature
method of moments (DQMOM) [19] where the PDF is approximated
as a sum of Dirac delta functions with evolving parameters. This
method suffers from the Hausdorff moment problem [20]. There are
some variations of this method where the PDF is expressed as a
weighted sum of few constituent PDFs, referred to as partial PDFs,
and propagates them instead of the Dirac delta functions [21].

Nonparametric propagation of uncertainties can be done in two
ways: approximate method and direct method.

1) Approximate method is where one tries to estimate (in non-
parametric sense) the underlying PDF. The method aims to
approximate the solution of the PDF transport equation. This method
is widely exercised in statistics community [22] under the name of
kernel density estimation, although most applications there concern
with static data. In a dynamical system, optimal values of the
parameters must be determined at every instant of time.Many special
cases of this, may be constructed depending on the type of kernel
function and the criteria for optimization. A least-square error
minimization set up is described in [23] and is shown to have good
computational performance. Further generalizations are possible by
considering general basis functions which are not density functions
themselves. However, this too can suffer from high computational
cost arising due to the explicit enforcement of normality constraint
and moment closure constraint at each step of the optimization

procedure. Moreover, for high-dimensional state spaces like
planetary EDL, recursively performing constrained optimization
becomes extremely challenging.

2) Direct method is where one works with the PDF transport
equation and instead of approximating its solution, strives to solve
that equation directly. In the absence of process noise (which is the
case we will restrict ourselves in this paper), this transport equation
reduces to the stochastic Liouville equation (SLE) [24], which is a
quasi-linear partial differential equation (PDE), first order in both
space and time. This equation describes the time evolutionof the joint
PDF over the state space, which itself is changing due to the known
dynamics. In this paper, we argue that the stochastic Liouville
equation can be easily solved in such direct way using the method of
characteristics (MOC). Because all the statistics can be derived from
the PDF, from an information point of view, it is definitely superior
than parametric propagation methods. Further, since we will be
looking to solve the SLEdirectly, the solutionswill satisfy the criteria
to be PDF. Hence the problems like moment closure or normality
constraints are not required to be enforced explicitly.

Our objective in this paper is to demonstrate that an MOC
implementation in direct method can be computationally attractive
and it does provide the necessary rigor for a statistically consistent
uncertainty quantification for the EDL problem. To see why it is the
case, one must realize that in solving the SLE, one propagates the
joint PDF prescribed at the initial time subject to the deterministic
dynamics. In MC method, one randomly picks a single initial
condition and computes the trajectory and then repeats the process. In
the SLEmethod, instead of individual realizations (initial conditions
and/or parameters), one propagates the ensemble of realizations.
This, in essence, means that the number density of trajectories meet
the continuum hypothesis [24]. Just like the continuity equation in
fluid mechanics transports the fluid mass in configuration space, the
SLE transports the probability mass in phase space.

This paper is organized as follows. The SLE framework will be
described in the next section along with some illustrative examples.
The nonlinear Hypersonic flight dynamics model for planetary entry
will be mentioned in Sec. III. Before attempting to solve the SLE for
the full problem, we will describe some special cases in Sec. IV,
which will provide some insight to the analysis. In Sec. V, the
numerical simulations will be described. Section VI will describe
how to perform further EDL specific statistical analysis and it will be
shown that many typical analysis problems of EDL interest, fits
nicely in the SLE framework. Section VII will conclude the paper.

II. Stochastic Liouville Equation

Consider the nonlinear autonomous state space model

_x� f�x;p�; x 2 Rns ; p 2 Rnp (1)

which can be put in an augmented form

_X� F�X�; X 2 Rns�np (2)

where X� �x p �T is the extended state space.
It is well known that under certain regularity conditions on the

function f, the existence and uniqueness of the solution of Eq. (1)
subject to the initial condition x�0� � x0, can be guaranteed (see
theorems 3.2 and 3.3 in [25]). With mild conditions, one can also
ensure that (theorems 3.4 and 3.5 in [25]) the unique solution of (1)
depends continuously onx0,p and t. These properties are assumed to
hold in all subsequent analysis.

Given such a deterministic function f (or equivalently F), the
transport equation that convects the probabilistic uncertainty in the
initial condition and parameters, is given by

@’�X; t�
@t

�
Xns
i�1

@

@Xi
�’�X; t�Fi�X�� � 0 (3)

which is a quasi-linear first-order PDE with the joint PDF ’�X; t�
being the dependent variable. This is the SLE which states that the
spatio-temporal evolution of the joint PDF occurs in a way that
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preserves the total probability mass. Put differently, if we pick up a
control volume in the (extended) state space, the net flux of
probability mass must be zero provided no realizations are created or
destroyed (no source or sink), which holds true since all realizations
start from the same initial condition [24]. SLE can be seen as the
transport equation associated with the Perron-Frobenius (PF)
operator [26].

A. Method of Characteristics

In this section, we briefly describe the MOC and show how that
helps in reducing a linear or quasi-linear PDE to an ODE along the
characteristics. Application ofMOC to nonlinear PDEs can be found
in [27].

Consider a PDE of the form

Xn
i�1

ai�z1; z2; . . . ; zn;U�
@U
@zi
� ��z1; z2; . . . ; zn;U� (4)

with U being the dependent variable and z1; z2; . . . ; zn are the n
independent variables. The characteristic curves corresponding to
Eq. (4) are given by the Lagrange–Charpit equations [28]

dz1
a1�z1; z2; . . . ; zn;U�

� dz2
a2�z1; z2; . . . ; zn;U�

� . . .� dzn
an�z1; z2; . . . ; zn;U�

� dU
��z1; z2; . . . ; zn;U�

(5)

Geometrically, this means that the (n� 1) dimensional vector field

F :� �a1�z1; z2; . . . ; zn;U�; a2�z1; z2; . . . ; zn;U�; . . . ;
an�z1; z2; . . . ; zn;U�;��z1; z2; . . . ; zn;U��

is tangent to the surface U � U�z1; z2; . . . ; zn� 8 fz1; z2; . . . ; zngT 2
Rn. In other words, the solution of the PDE (4) is an (n� 1)
dimensional surfaceU�z1; z2; . . . ; zn� and it can be constructed as the
union of the integral curves [or characteristic curves given by Eq. (5)]
of the vector field F .

To derive the characteristic curves for the SLE, we put Eq. (3) in a
form similar to Eq. (4) (using product rule of differentiation)�Xns

i�1
Fi�X�

@’�X; t�
@Xi

�
� @’�X; t�

@t
��’�X; t�

Xns
i�1

@Fi�X�
@Xi

(6)

From Eq. (5), it readily follows that the characteristic curves for
Eq. (6) are given by

dX1

F1

� dX2

F2

� . . .�
dXns

Fns
� dt

1
� d’�X; t�
�’�X; t�

Pns
i�1

@Fi
@Xi

(7)

The equation above shows that the characteristic curves for the SLE
are nothing but the trajectories of the dynamics given by Eq. (2).

B. Solution Methodology

It can be noted from Eq. (7) that using MOC, along the trajectory,
one can reduce the SLE to an ODE of the form

d’�X; t�
dt

��’�X; t���X� (8)

where ��X� :�
Pns

i�1
@Fi
@Xi

is the trace of the Jacobian of the

underlying dynamics and hence, evolves with time. At this point, it is
apparent that if the intial state and parametric uncertainties are
specified in terms of a joint PDF ’0 :� ’�X�0�; 0�, then one can
write the solution of Eq. (8) as

’�X; t� � ’0 exp
�
�
Z
t

0

��X���� d�
�

(9)

The exponential in Eq. (9) is formally known as the ordered
exponential [29] and is analogous to the Dyson operator of the

quantum Liouville equation [30] in statistical quantum mechanics.
Because the ordered exponential is a ratio of the instantaneous and
initial PDFs, one may interpret it as a likelihood ratio [31].

It can be observed that��X�t�� is the divergence of the vectorfield
and hence, is a measure of the rate of change of the phase space
(Lebesgue) volume. For example, ifF is linear time invariant, then�
must be a constant. Depending on the sign of this constant, the phase
space volume can expand (expanding flow) or contract (contractive
flow) exponentially fast or may remain constant (volume-preserving
flow). The Liouville Theorem [32] tells us that the case of
divergence-free vector field ensures that the system is Hamiltonian.
Notice that a nonlinear vector field can be Hamiltonian too.

In general, it is hardly possible to evaluate the integral in Eq. (9)
analytically and thusmandates numerical solution. Once the solution
for the joint PDF ’�X; t� is obtained, one can find the marginal PDFs
by integrating out the other states over their respective domains,
namely

’�Xi; t� �
Z
D1

. . .

Z
Di�1

Z
Di�1

. . .

Z
Dns

’�X; t� dX1 . . . dXi�1 dXi�1 . . . dXns (10)

where Di is the domain of the ith state variable at time t. Here it is
important to realize that since the domain in the state space is
deforming with time, one must know the instantaneous domain to
carry out the integration in Eq. (10). This will be explained in more
details later in the paper.

C. Illustrative Examples

We now provide some examples to clarify the ideas presented
above. Specifically, we want to illustrate how MOC enables the
solution of SLE (which is a PDE) by solving ODE initial value
problem along the trajectories.

1. 1-D Example

Let us consider the simple 1-D dynamics [31] given by _x��x2
with initial condition x�0� � x0. Then the solution of this initial value
problem is given by

x�x0; t� �
x0

1� tx0
(11)

Consequently, we have

��x�t�� � �2x�t� � � 2x0
1� tx0

) exp

�
�
Z
t

0

��x���� d�
�
� exp

�
2x0

Z
t

0

d�

1� �x0

�
� �1� tx0�2 (12)

which, from Eq. (9), leads to

’�x; t� � ’0�x0��1� tx0�2 (13)

Now we can find x0 � x0�x; t� using Eq. (11) as

x0 �
x

1 � tx (14)

and substitute this to Eq. (13) to yield

’�x; t� � ’0
�

x

1 � tx

��
1� tx

1 � tx

�
2

�
’0� x

1�tx�
�1 � tx�2 (15)

Figure 1 shows the spatio-temporal evolution of the PDF ’�x; t�
according to Eq. (15), when the initial PDF is chosen to be a standard
normal distribution. The surface plot in Fig. 1a illustrates the rise of
the PDF peakwith time, accompaniedwith a shrinkage of its support.
As Fig. 1b shows, as t!1, the PDF tends to become a dirac delta
distribution. This is not surprising since the origin being the unique
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equilibrium of this dynamics, in the asymptotic limit, all probability
mass gets in that sink. Thus, the support of the stationary distribution
has Lebesgue measure zero.

2. 2-D Example

Next, consider a planar vector field

_x� x�� 2y

log�x2 � y2� _y� y� 2x

log�x2 � y2� (16)

with given initial conditions x�0� � x0 and y�0� � y0. Looking at the
form of the dynamics, we convert Eq. (16) from Cartesian to polar
coordinates using the standard transformation r _r� x _x� y _y and
_	� x _y�y _x

x2�y2 to obtain

_r��r _	� 1

log r
(17)

purely as a matter of working convenience. The initial conditions for

Eq. (17) are r0 :� r�0� �
����������������
x20 � y20

p
and 	0 :� 	�0� � arctan y0

x0
.

From the polar equations, it immediately follows that as t!1,
r�t� ! 0 and j	�t�j ! 1 implying that the origin is a globally
asymptotically stable spiral for this nonlinear system (Fig. 2). Notice,
however, that a linear stability analysis predicts the origin to be a
stable star. In fact, one can easily solveEq. (17) to get the trajectory in
closed form

r�r0; t� � r0e�t; 	�	0; t� � 	0 � log

�
log r0

log r0 � t

�
(18)

which corroborates the asymptotic behavior mentioned above.
Further, one can compute

�� @

@r
��r� � @

@	

�
1

r

�
��1

) exp

�
�
Z
t

0

��r���; 	���� d�
�
� et (19)

From Eq. (18), we also get

r0�r; t� � ret; 	0�	; t� � 	 � log

�
log r� t
log r

�
(20)

Thus, Eqs. (19) and (20) result

’�r; 	; t� � ’0�r0; 	0�et � ’0
�
ret; 	 � log

�
log r� t
log r

��
et (21)

If the initial conditions are sampled from a uniform distribution,
the transient PDFs resemble the phase portrait of Fig. 2, converging
toward a dirac delta at the origin. To examine the case for non-
uniformly sampled initial conditions, an initial PDF is taken which
has a high probability around 	� 0 and is symmetric about the same.
The polar plots of Fig. 3 shows the PDF contours at t� 0, 0.2, 0.5,
1.0, 1.4 and 2.0, respectively, for the dynamics given by Eq. (16). It
can be observed that the support of the transient PDFs shrink
progressively and spirally converge toward the origin. The center
(periphery) has high (low) probability.

Remark 1: The two simple examples given above illustrate how
MOC solves the SLE. InMOC, the initial value problem (IVP) given
by Eq. (8) is solved along the characteristics (which in case of SLE,
are the integral curves or trajectories of the flow). Thus the integral in
Eq. (9) is a path integral computed along each trajectoy (see Fig. 4).

a) With time, the PDF support shrinks and tends toward 
the asymptotic limit of impulse function.

2
0

2
2

4

6

0

5

b) Stacked PDF snapshots at the initial and five consecutive times, 
starting with a standard normal distribution.

Fig. 1 Evolution of theN �0; 1� initial PDF according to Eq. (15).
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Fig. 2 Vector field (left) and an ensemble of trajectories in the phase space (right) for the nonlinear system given by Eq. (16).
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To further clarify this, consider a divergence-free vector field. Then
Eq. (8) tells us that the joint PDF remains constant as long as we are
riding a particular trajectory. The value of this constant is different
along a different trajectory. Thus, a volume-preserving flow, in
general, does admit a spatio-temporally evolving PDF. For the same
reason, in the above examples, initial condition was computed as a
function of the current state and time to substitute for X�0� in
’�X�0�; 0� [see Eqs. (14), (15), and (21)].

Remark 2: For the SLE, since the trajectories are same as the
characteristic curves and trajectories cannot intersect (due to
uniqueness), the solutions of the MOC are no where discontinuous.
Further, notice that, to compute the inversemap ofx� x�x0;p; t�, of
the form x0 � x0�x;p; t�, our earlier stated assumption of the
continuity of x on x0, p, and t, comes into play.

III. Nonlinear Flight Dynamics for Hypersonic Entry

In this paper, we will concentrate on applying the theoretical
framework described above to the problem of hypersonic EDL
modeled through Vinh’s equations [33]. We will work with two
different versions of the model, a three state model where the
dynamics is assumed to be purely longitudinal, and a more general
six-state model with lateral-longitudianl coupling. Both these
models describe the trajectory of the center-of-mass of the spacecraft
entering into the Mars atmosphere.

A. Three-State Model

Assuming the entire trajectory is contained in the longitudinal
plane, one can write the following nondimensionalized three-state
�h; V; ��model for nonrotating spherical Mars with zero bank angle
flight.

_h� V sin � (22a)

_V �� �R0

2Bc
V2 � gR0

v2c
sin � (22b)

_� � �R0

2Bc

CL
CD

V � gR0

v2c
cos �

�
V

1� h �
1

V

�
(22c)

Here the model for Martian atmospheric density variation [34] is
taken as

�� �0 exp
�
h2 � hR0

h1

�
(23)

where h2 � 20 km and h1 � 9:8 km. The mean equatorial radius of
Mars will be taken as R0 � 3397 km.

B. Six-State Model

Herewe present themore general form of Vinh’s equations, which
is a nondimensionalized six-state �h; �; �; V; �; �� model. This
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Fig. 3 The PDF contours computed from Eq. (21) at t� 0, 0.2, 0.5, 1.0, 1.4, and 2.0, respectively.

Fig. 4 In MOC based SLE method, along each sample trajectory, the
probability weights are updated during dynamics propagation. In MC

method, one tries to reconstruct a histogram to approximate such weight

distribution, as a postprocessing step. So the main advantage of SLE

compared with MC is the ability to update exact probability weights on
the fly and hence, the samples are colored, so to speak, with the color-

value being proportional to the value of the instantaneous joint PDF.
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model takes the self-rotation rate� of the planet and the bank angle �
into account.

_h� V sin � (24a)

_�� V cos � sin�

�1� h� (24b)

_�� V cos � cos�

�1� h� cos � (24c)

_V �� �R0

2Bc
V2 � gR0

v2c
sin �

� R
2
0�

2

v2c
�1� h� cos ��sin � cos � � cos � sin � sin�� (24d)

_� � �R0

2Bc

CL
CD

V cos � � gR0

v2c
cos �

�
V

1� h �
1

V

�
(24e)

_�� �R0

2Bc

CL
CD

V sin �

cos �
� V cos �

�1� h� tan � cos�

� 2R0�

vc
�tan � cos � sin� � sin ��

� R
2
0�

2

v2c

�1� h�
V cos �

sin � cos � cos� (24f)

� was calculated from the rotational time period of Mars, which is
24 h, 39 min, and 35.24 s. The density variation is taken identical to
the three-state model.

IV. Application of SLE to Some Specific Cases

Before solving SLE for the models described in the preceding
section, we will examine certain restricted cases of the same. Since
the three and six-state models, in general, require numerical solution
for the PDF, considering some specific cases will give us some
physical understanding of the problem. Many case studies of this
nature can be found in [14] (see Ch. 7).

A. Horizontal Flight

For horizontal flight, � 	 0 and h� constant. Therefore, only the
second equation remains to be considered in Eq. (18), which
becomes

_V �� �R0

2Bc
V2

)
Z
V

V0

dV

V2
�� �R0

2Bc

Z
t

0

dt �since h is constant; so is ��

) V � V0

1� �R0

2Bc
V0t

(25)

which implies that V decreases monotonically with time. In this

case, ’�V; t� � ’0�V0� exp��
R
t
0 ��V���� d��, where��V� �

�R0

Bc
V.

Therefore

’�V; t� � ’0�V0�
�
1� �R0

2Bc
V0t

�
2

� ’0�V0�
�
V0

V

�
2

� ’0
�

V

1 � �R0

2Bc
Vt

�
1

�1 � �R0

2Bc
Vt�2

(26)

Thus, given an initial PDF describing the intial condition uncertainty,
Eq. (26) provides an algebraic expression for determining the PDF at
any current time and velocity.

B. Vertical Flight

This special case concerns the vertical descent (� �� 

2
) in a

nonlifting trajectory. Consequently, we eliminate Eq. (22c) as all
terms in it are identically zero. Hence, we are left with Eqs.(22a),
(22b), and (23). Substituting � in Eq. (22b) as a function of h,
we get two first-order coupled nonlinear ODEs in h and V, shown
below

_h��V (27a)

_V ��K1V
2e��h � K2 (27b)

with K1 � �0R0

2Bc
eh2=h1 , �� R0

h1
and K2 � gR0

v2c
. With ���2K1Ve

��h,

the SLE needs to be solved numerically along with the above
dynamics.

With nominal initial altitude h0 � 80 km and nominal initial
velocity V0 � 3:5 km=s, and assuming 5% uniform dispersion in
both h0 andV0, the SLEwas solved numerically. The simulation was
repeated for 15% uniform dispersion in both h0 and V0. In both the
cases, 1000 samples were taken to represent the trajectory ensemble.
Figure 5 shows the color-coded scatter plots at t� 19:13 seconds in
the hV plane with the color-value being proportional to the value of
the bivariate joint PDF at that instant. Notice that, a larger dispersion
in the initial conditions results inmore spread in the point cloud at the
same instant of time.

2.5 2.6 2.7 2.8 2.9 3 3.1 3.2
8

10

12

14

16

18

20

22

V (Km/s) V (Km/s)

h 
(K

m
)

a) Scatterplot at t = 19.13 sec with 5% uniform initial 
condition uncertainties in h0 and V0

b) Scatterplot at t = 19.13 sec with 15% uniform initial 
condition uncertainties in h0 and V0

1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

h 
(K

m
)

Fig. 5 Scatterplot snapshots for uncertainty evolution of systems (27a) and (27b) with uniform dispersions in the initial conditions.
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V. Numerical Simulations

In this section, the numerical simulation set up is described for
solving the SLE for the three- and six-state models described in
Sec. III. The simulation framework is provided in detail followed by
results and discussions.

A. Simulation Setup

The nominal initial conditions were taken to be h0 � 80 km,
�0 � 24:01�N, �0 � 341:03�E, V0 � 3:5 km=s, �0 ��2� and
�0 � 0:0573�. The nominal values of the parameters were taken as

Bc � 72:8 kg=m2, �0 � 0:0019 kg=m3 and CL
CD
� 0:3. Because the

models described in Sec. III are nondimensionalized, numerical
integration was performed in nondimensional time ~t� 0 to 0.7 with
the nondimensional step-size of�~t� 0:01. One can easily convert it
back to the physical time by multiplying the nondimensional time

with a factor R0

vc
. In this paper, results are presented for two kinds of

initial uncertainties, viz. 5% uniform dispersion in each variable and
Gaussian dispersion about the nominals with 10% variance along
each dimension.

B. Simulation Framework

The simulation framework comprises of three main modules as
described below.

1. Sampling Initial Distribution

The initial uncertainties are specified by an initial joint PDF. Once
the initial joint PDF is known, one needs to generate a prespecified
number of samples such that they best represent that joint PDF. For
the case of uniform initial distribution, one may do a grid-based
discretization or for high dimensions, opt for a pseudorandom
number generator using low-discrepancy sequences like Halton
sequence [13] to avoid the curse of dimensionality. Somepreliminary
comparative simulation results along these lines were reported in
[35]. In this paper, samples from uniform initial PDF were generated
using multidimensional Halton sequence. For nonuniform initial
PDFs, one need to use probability integral transform (e.g., Box–
Muller transform in case of normal distribution) methods [36].
However, one must resort to the Markov Chain MC [37–39]
(MCMC) techniques to achieve better computational performance
for sampling any general initial PDF in high dimensions [40].

2. Uncertainty Propagation

The samples from the initial uncertainty polytope are propagated
according to the dynamics given in Sec. III and the SLE is solved at
each time step. Four libraries are required to achieve this. The
dynamics library specifies the nonlinear model and the atmosphere
model is provided in a separate library, which is used by the
dynamics. Another library does gradient computation (analytically
for the present case or usingfinite differencing for a black boxmodel)
needed to solve the SLE. A fourth-order Runge–Kutta (RK4) based
integrator was used to propagate the dynamics and for solving the
SLE. All results reported below are from the MATLAB®
implementation using variable step-size ode45 integrator.

3. Postprocessing of the Joint PDF Data

As the samples from the initial PDF are propagated according to
dynamics, the joint PDF at any given time is represented by the
instantaneous distribution of those evolved samples. Because of the
nonlinear dynamics, such a distribution, in general, is a scattered data
set residing over the extended state space. These evolved joint PDFs
are required to compute the marginal distributions that correspond to
those typically used in EDL analysis. For doing this, one needs to
isolate a snapshot of interest and integrate out the dimensions other
than whose marginal is sought. In Sec. II.A, we briefly touched upon
the fact that because of dynamics, the domain or the support of the
joint PDF deforms with time and the integration for marginal
computation needs to be carried out over few dimensions of this

instantaneous domain. This brings forth the problem of integration
over high-dimensional scattered data.

One way to tackle this problem is to interpolate these scattered
data, which itself is numerically challenging. We mention here that
since the joint PDF values were computed directly by solving SLE, it
is an interpolation problem as opposed to function approximation.
Alternatively, one may attempt the numerical integration without
interpolation. For this, one can sprinkle a new set of Halton points
(prefarably more than the number of samples) inside the bounding
box of this static/time-frozen data and then use these newly sprinkled
points as the quadrature points to carry out quasi-MC (QMC)
integration [13] (see Ch. 2). The computational cost associated with
this approach comes from the evaluation of the joint PDF values at
this new set of points, which can be determined by first back-
integrating the dynamics and then forward integrating the SLE for
these quadrature points.

Notice, however, that for computing marginals from MC simu-
lations, one takes a frequentist approach and counts samples in the
bins lying on the requisite slices. Because we are interested to
compare the SLE derived marginals with those obtained fromMC, a
similar (and computationally less heavy than described above)
method can be employed to approximate the marginals from SLE. In
the PF-derived SLE method, since one has a probability weight
associated with each sample, one can do a binning similar to MC
histograms. Only this time, instead of counting the number of
samples in each bin, the bin weight can be assigned as the average of
the joint PDF values of the samples in that bin (see Fig. 6).
In both cases, the individual bin weights need to be normalized with
respect to the bin size and total probability weight. All marginals of
PF-derived SLE method presented here, are computed in this
fashion.

Fig. 6 A schematic for computing marginals from scattered
instantaneous joint PDF data. For example, after solving the SLE for

three-state Vinh’s equations with initial condition uncertainties, to

compute univariate marginal in h, one would take V� slices at different

sample levels of altitude. At each such slice (the one with solid edges),
one can average out the V and � directions using the joint PDF values

as explained in Sec. V.B.3 and obtain a scalar value. One would then

shift this slice at the next h sample level (dotted slice) and repeat the

exercise. This results the h-marginal vector ’h�h� as shown. By taking
slices in other orthogonal directions, one can similarly get ’V�V� and
’����. The idea can be easily extended to compute higher dimensional

marginals.
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C. Results and Discussion

For the three-state model, it is possible to visualize the joint PDF
using three dimensional color-coded scatter plots similar to Fig. 5.
Such plots are shown in Fig. 7 for 1000 samples at ~t� 0:05, 0.20,
0.30, and 0.50 with both uniform (top row) and Gaussian (bottom
row) initial condition uncertainties. It can be observed that at
~t� 0:05, the joint PDFs are slightly perturbed from the respective
initials. As time progresses, the probability mass accumulates near
zero altitude and zero velocity and the flight-path angle (FPA)
assumes a steep value. This is in agreement with the physical
intuition as the vehicle, with high probability, slows down through
the lower part of the atmosphere.

Starting from the uniform initial joint PDF, the evolution of the
univariate and bivariate marginals for the three-state Vinh’s
equations, are shown in Fig. 8. The same for the Gaussian initial PDF
are plotted in Fig. 9. The univariateMC (dashed) and PF (solid) PDFs
are in goodmatch. The bivariatemaginals show the general trend that
PF-derived marginals (bottom row) capture
the concentration of the probability mass well (by virtue of the
probabilityweights obtained by solving SLE)while theMCbivariate
marginals (top row) tend to smear it out (because of the histogram
approximation). This can be seen, for example, in V� bivariate plots.
Similar trends can be observed for the six-state model. For brevity, in
Fig. 10, we only show the snapshot of univariate PDFs at ~t� 0:30 for
the six-state model with uniform initial PDF.

The simulation results shown above bears testimony to the fact that
with same number of simulations, PF operator based approach can
better resolve the PDF compared with MC method. This is not
surprising since the former assigns explicit probability weights
computed by solving the SLEwhile the latter tries to construct a PDF
using crude histogram approximation. The success of the latter (in
terms of good approximation of the PDF) is heavily dependent on the
number of sample trajectories being evolved. Hence, SLE-based PF
methods can be computationally attractive over MC, particularly in
high-dimensional nonlinear problems like spacecraft EDL, as it
evolves less number of high initial probability samples to achieve an
accurate resolution of the PDF.

To quantify the closeness of the MC and PF based marginal PDFs
shown before, two information-theoretic quantities were used, viz.
Kullback–Leibler (KL) divergence�KL and Hellinger distance�HL.
The KL divergence measures the distance between two PDFs P�x�
and Q�x�, and is defined as

�KL�PkQ� :�
Z �1
�1

P�x� logP�x�
Q�x� dx (28)

It can be interpreted as the relative entropy between twoPDFs and is a
pseudometric (nonsymmetric and does not obey triangle inequality).
A similar quantity, Hellinger distance, is defined as

�2
HL�PkQ� :�

1

2

Z �1
�1
�
�����������
P�x�

p
�

�����������
Q�x�

p
�2 dx (29)

and it does obey the triangle inequality. Further, since Hellinger
distance lies between 0 and 1, it can be interpreted as the percentage
distance between two densities. In Fig. 11, KL divergence and
Hellinger distance between the respective univariate marginals of the
three-state Vinh’s equations are plotted for ~t� 0:30 for the case with
uniform initial PDF. The superscripts denote the respectivevariables.
The PF marginals are taken as the reference densities. We observe
that MCmarginals are in close match with the PF ones at this instant.
However, as the PDF evolves further, the difference between the
histogram-based MC and SLE-based PF marginals become more
prominent, as was qualitatively observed in Fig. 8. The two
information-theoretic metrics provide a quantitative measure of the
same. Figure 12 shows the variation of these information metrics
with sample size for ~t� 0:50. Notice the increase in the ordinate
values by at least an order of magnitude, compared with the same in
Fig. 11. The exercise can be repeated for various time instances to get
an idea of the computational performance.

VI. Further Statistical Analysis

In this section, we will demonstrate few case studies pertaining to
EDL specific analysis in the SLE framework.

A. Case I: Tracking Uncertainty

It is of interest to compute the probability that the flight-path angle
(FPA) will be within a specified interval, i.e., �min ⩽ � ⩽ �max. This
problem is important in the context of tracking the spacecraft by a
space-based antenna. Univariate FPAmarginals (like those shown in
Figs. 8–10) can be computed at different times to calculate the
tracking probabilities. Such information can be crucial frommission
design perspective.

B. Case II: Landing Footprint Uncertainty

Computing the landing footprint uncertainty has been one of the
key aspects of EDL analysis. Important decisions like landing risk
evaluation and trajectory correctionmaneuver (TCM) design depend
on it. A list of factors contributing toward landing footprint un-
certainty, can be found in [9]. Almost all EDL analysis has been
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Fig. 7 Scatter plots of the joint PDF with three dimensional support �h;V; �� at ~t� 0:05, 0.20, 0.30, and 0.50, respectively. Columns show different
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based on evolving a bivariate Gaussian in latitude and longitude and
thereby characterizing a 3� landing ellipse representing the landing
footprint uncertainty. Historically, the landing ellipses have spanned
hundreds of kilometers (see Fig. 13).

However, depending on the initial uncertainty and system
dynamics, the latitude–longitude bivariate marginal can be far from
Gaussian, resulting the 3� estimates unrealistic. On the other hand,
computing this marginal using MC method is not only computa-
tionally expensive but can be inaccurate, for reasons discussed in
Sec. V.C. Figure 14 compares the latitude–longitude � � � �
bivariate marginal at the final time, computed for the six-state model
using MC (left) and SLE-based PF (right) method. Notice that, the
SLE-based PFmethod (right in Fig. 14) predicts the landing footprint
to be at approximately 377 deg east and 21.3 deg north, with
maximum probability and a very small dispersion around it. It
ascertains that the landing probability everywhere else is zero. In

contrast, MC method (left in Fig. 14) can at best predict a high
probability around 357–381 deg east and 20.5–21.4 deg north and is
unable to do any further refinement of the landing footprint
uncertainty. Not surprisingly, such huge MC dispersion in latitude–
longitude results 3-� landing ellipse spanning hundreds of kilo-
meters. It is evident that SLE-based PF method outperforms MC.

Looking at such dramatic localization of uncertainty computed
through SLE (Fig. 14), one should not get confused by thinking that
SLE underpredicts uncertainties. SLE simply computes exact
probability density values whereas MC approximately reconstructs
these values through histogram. Based on the approximation
parameters (e.g., number of bins, overlapping or nonoverlapping
bins, equal or unequal bin-size, etc.), the MCmethod, as a piecewise
constant approximation algorithm, may underpredict or overpredict
uncertainty. In either case, SLE stands superior as exact value,
irrespective of the relative size of the PDF support.
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Fig. 8 The univariate and bivariate marginals for the case of uniform initial condition uncertainty at ~t� 0:05, 0.30 and 0.50, respectively. The

simulation is for three-state Vinh’s equations with 5000 samples. For univariate marginals, PF results are in solid and MC results are in dashed. For
bivariate marginals, PF results are in the bottom row and MC results are in the top row.
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C. Case III: Heating Rate Uncertainty

It is of interest to compute the univariate density of heating rate _Q
(j=s) given by

_Q� 1

4
Cf�V

3S � 1

4
Cf�0 exp

�
h2 � hR0

h1

�
V3S

��V3e��h ≜ 
�V; h� �say�

where �� 1
4
Cf�0Se

h2
h1 and �� R0

h1
. HereCf refers to the skin-friction

coefficient of the exterior surface area of the entry capsule. Let us

introduce an auxiliary random variable &� V ≜  �V; h�. The

functions 
 and  define a mapping �V; h�7!� _Q; &�. Jacobian (and
its determinant) of this transformation can be calculated as

Root of the inverse mapping is found to be

�V
; h
� �
�
&;

1

�
log

�
�&3

_Q

��
(31)

From the equation before Eq. (31), one can evaluate the determinant
of the Jacobian at the root of the inversemapping given by Eq. (31) as

det�J
� � ��&3
_Q

�&3
� � _Q (32)

Because �; �; V > 0, it is easy to verify that the mapping

�V; h�7!� _Q; &� defined by the functions 
 and  , is bijective.
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Fig. 9 The univariate and bivariate marginals for the case of Gaussian initial condition uncertainty at ~t� 0:05, 0.30 and 0.50, respectively. The

simulation is for three-state Vinh’s equations with 5000 samples. Conventions for the MC and PF plots are same as in the previous figure.
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Consequently, the joint density in the transformed variables �&; _Q� is
given by

��&; _Q� � ��V

; h
�

j det�J
�j (33)

where ��:; :� is the bivariate marginal in V and h. Further,

�� _Q� �
R1
0 ��&; _Q� d&. Thus, from Eqs. (31–33), we have

�� _Q� �
Z 1
0

1

� _Q
�

�
&;

1

�
log

�
�&3

_Q

��
d& (34)

Figure 15 shows the univariate PDFs for _Q per unit area (in
W=cm2) for the three-state model (left) and for the six-state model
(right), both with uniform initial condition uncertainty. The solid
lines show the SLE result and the dashed lines show the MC based
histogram approximation.

D. Case IV: Chute Deployment Uncertainty

Quantification of uncertainty for the purpose of chute deployment
is of growing interest as future Mars missions are expected to deploy
at higher Mach numbers [1]. It is important to schedule the
deployment in an Mach number M and dynamic pressure q regime
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such that the parachute can bear the stress and provide the requisite
aerodynamic deceleration performance. The question considered
here is whether the bivariate density in M and q is contained in a
prespecifiedM-q box. If significant amount of probability mass lies
outside this M-q box at the moment of chute deployment, then it
would be probabilistically unsafe to deploy the supersonic parachute
at that moment. From a mission design perspective, one can repeat
this analysis to find the best time to deploy the chute for robust
performance. Historically, for DGB parachutes, the Viking qual-
ification program has guided the design M-q box dimension to be
M � 1:1–2:2 and q� 239–850 Pa [12].

To characterize the Mach-q uncertainty, one needs to find the
transformed bivariate density ��M;q� from the bivariate marginal
density ��V; h�. Themapping considered here is �V; h�7!�M;q� and
is defined by

M� V�������������������
�R?T�h�

p ≜ 
�V; h� (35)

q� 1

2
�V2 � 1

2
�0 exp

�
h2 � hR0

h1

�
V2 ��V2e��h ≜  �V; h�

(36)

where �� 1
2
�0e

h2
h1 and �� R0

h1
, as defined in Case III. Here � is the

ratio of specific heats and R? is the difference between them
(assuming ideal gas). As before, one must find the Jacobian of this
transformation and compute the determinant as

J�
@

@V

@

@h

@ 
@V

@ 
@h

" #
�

1�������������
�R?T�h�
p � V

2
������
�R?
p

�T�h��3=2
dT
dh

2�Ve��h ���V2e��h

" #
(37)

) det�J� � �V2e��h�������������������
�R?T�h�

p �
1

T�h�
dT

dh
� �

�
(38)

Now one can proceed to compute the roots of the inverse mapping,
i.e., h and V as functions ofM and q. To do this, one can substitute
V2 �M2�R?T�h� [from (28)] in Eq. (36) to get

T�h�e��h � q

�M2�R?
� C �say� (39)

At this point, let us assume T�h� � �A � Bh for Mars atmosphere.
Then Eq. (39) leads to

A� Bh� Ce�h � 0 (40)

This transcendental equation in h can be solved in closed form in
terms of the LambertW function

h
 � �A
B
� 1

�
W0

�
C�

B
e�

A�
B

�
(41)

provided B� ≠ 0, which holds true for the case under consideration.
Notice that, since �; B; C > 0, the associated LambertW function is
singlevalued (zeroth branch (usually referred as the principal branch)
of W, denoted as W0) and consequently Eq. (41) is the unique
solution of Eq. (40). It should be emphasized here that the constantA
is a negative scalar. This is because the temperature is given by T (in

Viking 1,2 (1976)Pathfinder (1997)

Phoenix (2008)

MER A,B (2004)

MSL (2011)
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Fig. 13 Schematic comparison of landing footprints of Mars missions. To make a comparison between their sizes, all ellipses are drawn with the same
center and same orientation. The scale on each axis is in Km (data taken from [1]). The ellipse for the upcoming MSL mission is anticipated.
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�C) �� a � Bh where 273:15> a > 0, B > 0 and h is in meters.
Hence, the absolute temperature T (in Kelvin) �� a � Bh�
273:15��A � Bh with A� a � 273:15< 0. This will avoid any
confusion about the sign of h
.

Substituting Eq. (41) in Eq. (28), one can obtain

V
 �M
���������������������
�R?T�h
�

p
�M

������������������������������������������
�R?B

�
W0

�
C�

B
e�

A�
B

�s
(42)

Thus the root for the inversemapping is the doublet �V
; h
� given by
Eqs. (41) and (42), where it is reemphasized that C is a function of
bothM and q, as given in Eq. (39).

Combining Eqs. (38), (41), and (42) and noting that T�h
��
B
�
W0�C�B e�

A�
B �, one can derive

j det�J
�j ��M2e
A�
B

���������������
��R?B

p
0
BB@
�
C�
B
e�

A�
B

�
� e

W0

�
C�
B e
�A�
B

�
��������������������������
W0

�
C�
B
e�

A�
B

�r
1
CCA (43)

where the definition of LambertW function x�W�x�eW�x�, has been
used (see Appendix for details). Finally, the joint bivariate density in
�M;q� is given by

��M;q� � ��V

; h
�

j det�J
�j (44)

where the right-hand side needs to be evaluated using Eqs. (41–43).
Notice that, instead of using Lambert W function, one may also
proceed by numerically solving Eq. (40).

Appendix lists the temperature model and associated numerics
used in the simulation for computing theMach number. TheMach-q
bivariate marginals computed from Eq. (44) are plotted in Fig. 16 at
~t� 0:30 and 0.50. The first row shows the plots for the three-state
model with uniform initial condition uncertainty, the second row
corresponds to the same model with Gaussian initial condition
uncertainty. Plots in the last row are for the six-state model with
uniform initial condition uncertainty and follow similar trend as the
corresponding three-state case. With the Mach-q box dimension
specified earlier, one can notice that for a three-state dynamics,
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Fig. 16 Bivariate PDF of the Mach number and dynamic pressure (Pa) at ~t� 0:30 and 0.50. First and second rows are three-state model with uniform

and Gaussian initial PDF, respectively. The third row corresponds to the six-state model with uniform initial PDF.
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deploying a parachute at ~t� 0:50 will have significant reliability
with Gaussian initial uncertainty compared with uniform initial
uncertainty.

VII. Conclusions

A framework based on the SLE is provided for dispersion analysis
in planetary EDL. It was argued that in this framework, one can do a
systematic initial condition and parametric uncertainty analysis by
spatio-temporally evolving the joint PDF through the SLE. Various
analytical and numerical examples are given to illustrate how the
MOC can be used to directly solve SLE, thereby making this
framework not only computationally more tractable than traditional
MC analysis, but also more accurate. For the EDL problem, results
are provided for both three-state and six-state Vinh’s equations for
hypersonic entry in Mars atmosphere. Further, some case studies
were presented to demonstrate how this framework naturally enables
EDL specific statistical analysis. An initial implementation of the
methodology described here, is now available in NASA Jet
Propulsion Laboratory’sDSENDS simulator system for high-fidelity
numerical experiments [41].

Appendix

I. Lambert W Function

The present section is intended to provide an overview of the
Lambert W function. This function W is defined as the inverse of
the function f�W� �WeW , where W is any complex number. The
function satisfies the equation

W�z�eW�z� � z (A1)

for every complex number z. This equation has infinite number of
solutions, most of them being complex. Thus, W is a multivalued
function. The different solutions of Eq. (A1) are called different
branches ofW, and are denoted asWk. The index k takes its values
from an index set Z (the set of integers). Thus, different solutions or
branches of Eq. (A1) are W0�z�, W�1�z�, W�2�z�, etc. The case of
particular interest is when the solution is real. Depending on the
domain ofW, one may have zero, one or two real solutions; in each
case, the remaining solutions are complex. It is easy to see from
Eq. (A1) that W�x� is real, provided x 2 �� 1

e
;1� � R. Figure A1

shows howW�x� varies with x. From the figure, it follows that when
x 2 �� 1

e
; 0�, W is double valued (two branches W0 (solid) and W�1

(dashed)) and for x 2 �0;1�,W is single valued (onlyW0 branch). In
other words, unique real root occurs only when the domain is
restricted to the non-negative reals.

The readers are encouraged to refer the paper by Corless et al. [42]
for an excellent account onLambertW function fromboth theoretical
and applied point of view. Two more significant references geared
toward applications are [43,44].

II. Computing Mach Number

Case IV of Sec. VI discusses the quantification of chute
deployment uncertainty by computing the Mach-q bivariate PDF.
Equation (35) modeled the Mach number as M� V�������������

�R?T�h�
p . The

denominator
�������������������
�R?T�h�

p
represents the speed of sound. In this

section, we describe how to compute the quantities �,R?, andT�h� in
the present context.

A. Modeling �

The ratio of specific heats � is modeled as

� � f� 2

f
(A2)

with f being the total number of degrees-of-freedom (DOF) of the
molecule, which is further given by f� 3n, where n is the number of
atoms in a molecule. The contribution to total number of DOFs
comes from three types, viz. translational DOFs, rotational DOFs,
and vibrational DOFs; the amount of contribution from each type
depends on whether the geometric arrangement of the atoms in the
molecule are linear or nonlinear (see Table A1).

At low temperature, the vibrational DOFs are not excited. For
example, terrestial dry air, being primarily a mixture of diatomic
gases (approx. 78% nitrogen and 21% oxygen), has only three
translational and two rotational DOFs at low temperature. Hence
� lowair � 5�2

5
� 1:4. But at high temperature, all f� 3 
 2� 6 DOFs

are excited and �highair � 6�2
6
	 1:33.

Atmosphere inMars, being largely constituted of (approx. 95%by
volume) triatomic carbon dioxide (a linear molecule), has five total
molecularDOFs at low temperature and ninemolecularDOFs at high
temperature. In this paper, for the problem of hypersonic entry at
upper Martian atmosphere (typically more than 7 km altitude),
� � 1:4 is considered while for supersonic descent through thicker
(and warmer) atmosphere (below 7 km altitude), � � 11

9
	 1:22 is

assumed.

B. Modeling R?

The difference between specific heats (R?), sometimes called
specific gas constant, is given by

R? �
R

M
(A3)

whereR� 8:3145 Jmol�1 K�1 is the universal gas constant andM
is themolar mass of the gas or gas mixture (in kgmol�1). For carbon
dioxide, M� 44:01 
 10�3 kgmol�1, which leads to R?�
188:9230 J kg�1 K�1 [using Eq. (A3)].

C. Modeling T�h�
InMars atmosphere, the variation of temperatureTwith altitude h,

usually termed as the lapse rate, can be modeled as the following
piecewise linear function‡

T�h� �
�
�23:4 � 0:002220h for h > 7000

�31:0 � 0:000998h for h < 7000
(A4)

where T is in deg Celcius and h is in meters.
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Table A1 Different types of molecular DOFs

Type Number of
translational

DOF

Number of
rotational
DOF

Number of
vibrational

DOF

Linear molecule 3 2 3n � 5
Nonlinear molecule 3 3 3n � 6

‡Data available at http://www.grc.nasa.gov/WWW/K-12/airplane/
atmosmrm.html [accessed June 2010].
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