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A framework is provided for the propagation of uncertainty in planetary entry,

descent and landing (EDL). The traditional Monte Carlo based dispersion analysis is

overly resource-expensive for such high dimensional nonlinear systems and does not

provide any methodical way to analyze the effect of uncertainty for mission design. It is

shown that, propagating the density function through Liouville equation, is computa-

tionally attractive and suitable for further statistical analysis. Comparative simulation

results are provided to bring forth the efficacies of the proposed method. Examples are

given from the EDL domain to illustrate how one can retrieve statistical information

of interest from an analyst’s perspective.
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V Mars-relative velocity

γ Flight path angle

χ Velocity azimuth angle measured from North

σ Bank angle

ρ Martian atmospheric density
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ρ0 Reference-level density

Bc Ballistic coefficient

CL
CD

Lift-to-drag ratio

R0 Mean equatorial radius of Mars

g Acceleration due to gravity ≈ GM
(R0+h)

2 , where GM is the Gravitational constant for Mars

Ω Rotational angular velocity for Mars

vc Normalizing velocity constant =
√

µ
R0

, where µ = gR2
0

x State vector

p Parameter vector

f Dynamics vector

X Augmented state vector

F Augmented dynamics vector

ns Number of states

np Number of parameters

t Time

ϕ Probability density function

Ψ Trace of the Jacobian of the dynamics

Subscript

i Variable number

I. Introduction

WITH the need to develop next generation entry, descent and landing (EDL) technologies for

planetary exploration, quantification of unceratinties have become a major technical challenge for

space system simulations. In particular, Mars EDL technologies are witnessing a paradigm shift as

we strive for increasing the landing mass capability at a higher surface elevation (lower atmospheric

density) while improving the landing accuracy. Future missions including Mars Science Laboratory

(MSL), Mars Sample Return (MSR), Astrobiology Field Laboratory (AFL) are pushing the EDL
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technology limits towards the aforesaid directions to pave the way for human exploration missions.

As pointed out in [1, 2], from 1976 to 2008, all six NASA missions which landed successfully on

Mars, were based on Viking-era EDL technologies characterized by landing mass of less than 600

kg, landing elevation of less than -1.4 km Mars Orbiter Laser Altimeter (MOLA) reference with

landing footprint uncertainty in hundreds of km. In fact, they all had similar design attributes, e.g.

70◦ sphere-cone aeroshell, supersonic Disk-Gap-Band (DGB) parachutes with diameter less than the

Viking 16 m design and SLA-561V thermal protection system (TPS). In contrast, the MSL mission,

scheduled to launch in 2011, has a higher landing mass, higher surface elevation for landing, an

order of magnitude improvement in landing footprint uncertainty, a larger DGB parachute and a

new TPS. Braun and Manning [1] have listed the probable future directions of EDL technological

pursuits and challenges thereof. To achieve such technical readiness level, development of these

new generation of landers will require very high-fidelity simulations enabling the assessment of risk

and incorporating that knowledge for the purpose of robust mission design supported by statistical

verification and validation. More precisely, a probabilistic quantification of being inside or outside

some pre-defined operational safety margin is sought that can account the associated uncertainties

in initial conditions and system parameters resulting off-nominal trajectories.

Traditionally, a Monte Carlo (MC) based dispersion analysis is carried out for this purpose where

one simulates a large number of trajetories for randomly sampled initial conditions and parameter

values. If most or all of such trajectories remain inside the safety margin, one can at best hope for the

system safety and reliability without any quantitative guarantee whatsoever. Usually the engineers

responsible for subsystem models identify the uncertainty bounds and decide about the sampling

strategy based on their experience. Clearly, brute force MC simulations are not the best approach for

such mission critical uncertainty analysis. Moreover, for high dimensional and nonlinear dynamics

like spacecraft EDL, MC simulations are tremendously expensive as one strives to simulate individual

trajectories one by one for uncertainties in hundreds of states and parameters and their combinations.

In spite of all these drawbacks, almost all space mission uncertainty analysis are done with MC

simulations including Mars Pathfinder [3], METEOR [4] recovery module, Stardust [5] comet sample

return capsule, Mars Microprobe [6], Mars Surveyor Program 2001 Orbiter and Lander [7] and
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to-be-launched Mars Science Laboratory [8] (MSL) mission. In fact, many important decisions

in mission design have been historically driven by MC based dispersion analysis. Mars landing

site selection [9], design of the Pathfinder aeroshell thermal protection system [10] and parachute

deployment algorithm [3] are examples for the same. This heavy bias towards MC simulations

among EDL analysis practitioners is partly due to its ease of implementation and partly due to

the scarcity of alternative analysis methods. Two primary EDL simulation frameworks which are

seeing extensive use at present, are NASA Langley Research Center’s (LaRC) Program to Optimize

Simulated Trajectories II (POST2) [11] and NASA Jet Propulsion Laboratory’s (JPL) Dynamics

Simulator for Entry, Descent and Surface Landing (DESENDS) [12]. Both of these two presently

rely on MC based dispersion analysis for EDL simulations.

The limitations of MC based dispersion analysis are well known [13] (see Ch. 1) i.e. poor com-

putational scalability and lack of any coherent methodology to quantify the evolution of uncertainty

in a statistically consistent manner. Consequently, researchers have pursued different methods for

uncertainty propagation in dynamical systems in general while few of them have been attempted

in EDL domain. In this paper, we will classify these methods in two broad categories: parametric

(where one evolves the statistical moments) and non-parametric propagation of uncertainty (where

one evolves the full probability density function or pdf). There have been three major directions in

parametric propagation of uncertainty as listed below.

1. The simplest method in this category assumes a linear state space description of the form

ẋ = Ax, x ∈ Rn. With the initial condition uncertainty assumed to be Gaussian, one then

sets for propagating the mean (x̄) and covariance (P ) matrix by the well known equations

˙̄x = Ax̄ and Ṗ = ATP + PA. The computational efficiency of this method mainly depends

on the efficiency of the numerical algorithm to integrate the covariance propagation equation

and in some cases, may even perform worse than MC [14]. Of course, the major drawback is

that a typical EDL system with large number of states involving highly nonlinear dynamics

with non-Gaussian initial joint pdf is too far to fit in this framewrok. Nevertheless, this has

been attempted in EDL problem (see [14]).

2. In polynomial chaos (PC) method, one derives a set of deterministic ordinary differential
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equations (ODEs) using either Galerkin projection [15] or the stochastic collocation [16] and

then solves that set of ODEs. Although this method can handle nonlinear dynamics with

non-Gaussian uncertainties, one ends up solving a higher dimensional state space problem,

which becomes intractable for a realistic EDL simulation. Further, the method is difficult

to apply for large nonlinearities [17] and computational performance degrades (due to finite-

dimensional approximation of the probability space) if long-term statistics is desired. Recently,

this method has been applied to the EDL domain [18].

3. Another method in this category is called the direct quadrature method of moments (DQMOM)

[19] where the pdf is approximated as a sum of Dirac delta functions with evolving parameters.

This method suffers from the Hausdorff moment problem [20]. There are some variations of

this method where the pdf is expressed as a weighted sum of few constituent pdfs, referred as

‘partial pdf’s and propagates them instead of the Dirac delta functions [21].

Non-parametric propagation of uncertainties can be done in two ways: approximate method

and direct method.

1. Approximate method is one where one tries to estimate (in nonparametric sense) the underlying

pdf. The method aims to approximate the solution of the pdf transport equation. This method

is widely exercised in statistics community [22] under the name of kernel density estimation,

although most applications there concern with static data. In a dynamical system, optimal

values of the parameters must be determined at every instant of time. Many special cases

of this, may be constructed depending on the type of kernel function and the criteria for

optimization. A least-square error minimization set up is described in [23] and is shown

to have good computational performance. Further generalizations are possible by considering

general basis functions which are not density functions themselves. However, this too can suffer

from high computational cost arising due to the explicit enforcement of normality constraint

and moment closure constraint at each step of the optimization procedure. Moreover, for high

dimensional state spaces like planetary EDL, recursively performing constrained optimization

becomes extremely challenging.
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2. In direct method, one works with the pdf transport equation and instead of approximating its

solution, strives to solve that equation directly. In the absence of process noise (which is the

case we will restrict ourselves in this paper), this transport equation reduces to the stochastic

Liouville equation (SLE) [24], which is a quasi-linear partial differential equation (PDE), first

order in both space and time. This equation describes the time evolution of the joint pdf

over the state space, which itself is changing due to the known dynamics. In this paper, we

argue that the stochastic Liouville equation can be easily solved in such direct way using the

method of characteristics (MOC). Since all the statistics can be derived from the pdf, from

an information point of view, it’s definitely superior than parametric propagation methods.

Further, since we will be looking to solve the SLE directly, the solutions will satisfy the criteria

to be pdf. Hence the problems like moment closure or normality constraints are not required

to be enforced explicitly.

Our objective in this paper is to demonstrate that an MOC implementation in direct method

can be computationally attractive and it does provide the necessary rigor for a statistically consis-

tent uncertainty quantification for the EDL problem. To see why it is the case, one must realize

that in solving the SLE, one propagates the joint pdf prescribed at the initial time subject to the

deterministic dynamics. In MC method, one randomly picks a single initial condition and computes

the trajectory and then repeats the process. In the SLE method, instead of individual realizations

(initial conditions and/or parameters), one propagates the ensemble of realizations. This, in essence,

means that the number density of trajectories meet the continuum hypothesis [24]. Just like the

continuity equation in fluid mechanics transports the fluid mass in configuration space, the SLE

transports the probability mass in phase space.

This paper is organized as follows. The SLE framework will be described in the next section

along with some illustrative examples. The nonlinear Hypersonic flight dynamics model for planetary

entry will be mentioned in Section III. Before attempting to solve the SLE for the full problem, we

will describe some special cases in Section IV, which will provide some insight to the analysis. In

Section V, the numerical simulations will be described. Section VI will describe how to perform

further EDL specific statistical analysis and it will be shown that many typical analysis problems
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of EDL interest, fits nicely in the SLE framework. Section VII will conclude the paper.

II. The Stochastic Liouville Equation

Consider the nonlinear autonomous state space model

ẋ = f (x,p) , x ∈ Rns , p ∈ Rnp (1)

which can be put in an augmented form

Ẋ = F (X) , X ∈ Rns+np (2)

where X = [x p]T is the extended state space.

It is well known that under certain regularity conditions on the function f , the existence and

uniqueness of the solution of eqn. (1) subject to the initial condition x (0) = x0, can be guaranteed

(see Theorem 3.2 and 3.3 in [25]). With mild conditions, one can also ensure that (Theorem 3.4

and 3.5 in [25]) the unique solution of (1) depends continuously on x0, p and t. These properties

are assumed to hold in all subsequent analysis.

Given such a deterministic function f (or equivalently F), the transport equation that convects

the probabilistic uncertainty in the initial condition and parameters, is given by

∂ϕ (X, t)
∂t

+
ns∑
i=1

∂

∂Xi
[ϕ (X, t)Fi (X)] = 0 (3)

which is a quasi-linear first order PDE with the joint pdf ϕ (X, t) being the dependent variable.

This is the SLE which states that the spatio-temporal evolution of the joint pdf occurs in a way

that preserves the total probability mass. Putting differently, if we pick up a control volume in

the (extended) state space, the net flux of probability mass must be zero provided no realizations

are created or destroyed (no source or sink), which holds true since all realizations start from the

same initial condition [24]. SLE can be seen as the transport equation associated with the Perron-

Frobenius (PF) operator [26].

A. Method of Characteristics

In this section, we briefly describe the MOC and show how that helps in reducing a linear or

quasi-linear PDE to an ODE along the characteristics. Application of MOC to nonlinear PDEs can

7



be found in [27].

Consider a PDE of the form

n∑
i=1

ai (z1, z2, . . . , zn,U)
∂U
∂zi

= Γ (z1, z2, . . . , zn,U) (4)

with U being the dependent variable and z1, z2, . . . , zn are the n independent variables. The char-

acteristic curves corresponding to (4) are given by the Lagrange-Charpit equations [28]

dz1
a1 (z1, z2, . . . , zn,U)

=
dz2

a2 (z1, z2, . . . , zn,U)
= . . . =

dzn
an (z1, z2, . . . , zn,U)

=
dU

Γ (z1, z2, . . . , zn,U)
.(5)

Geometrically, this means that the (n+ 1) dimensional vector field

F := (a1 (z1, z2, . . . , zn,U) , a2 (z1, z2, . . . , zn,U) , . . . , an (z1, z2, . . . , zn,U) ,Γ (z1, z2, . . . , zn,U))

is tangent to the surface U = U (z1, z2, . . . , zn) ∀ {z1, z2, . . . , zn}T ∈ Rn. In other words, the solution

of the PDE (4) is an (n+ 1) dimensional surface U (z1, z2, . . . , zn) and it can be constructed as the

union of the integral curves (or characteristic curves given by (5)) of the vector field F .

To derive the characteristic curves for the SLE, we put (3) in a form similar to (4) (using product

rule of differentiation)(
ns∑
i=1

Fi (X)
∂ϕ (X, t)
∂Xi

)
+
∂ϕ (X, t)

∂t
= −ϕ (X, t)

ns∑
i=1

∂Fi (X)
∂Xi

. (6)

From (5), it readily follows that the characteristic curves for eqn. (6) are given by

dX1

F1
=
dX2

F2
= . . . =

dXns

Fns
=
dt

1
=

dϕ (X, t)

−ϕ (X, t)
ns∑
i=1

∂Fi
∂Xi

. (7)

The equation above shows that the characteristic curves for the SLE are nothing but the trajectories

of the dynamics given by eqn. (2).

B. Solution Methodology

It can be noted from eqn. (7) that using MOC, along the trajectory, one can reduce the SLE

to an ODE of the form

dϕ (X, t)
dt

= −ϕ (X, t) Ψ (X) (8)
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where Ψ (X) :=
ns∑
i=1

∂Fi
∂Xi

is the trace of the Jacobian of the underlying dynamics and hence, evolves

with time. At this point, it’s apparent that if the intial state and parametric uncertainties are

specified in terms of a joint pdf ϕ0 := ϕ (X (0) , 0), then one can write the solution of Eqn. (8) as

ϕ (X, t) = ϕ0 exp
(
−
∫ t

0

Ψ (X (τ)) dτ
)
. (9)

The exponential in eqn. (9) is formally known as the ordered exponential [29] and is analogous to

the Dyson operator of the quantum Liouville equation [30] in statistical quantum mechanics. Since

the ordered exponential is a ratio of the instantaneous and initial pdfs, one may interpret it as a

likelihood ratio [31].

It can be observed that Ψ (X (t)) is the divergence of the vector field and hence, is a measure of

the rate of change of the phase space (Lebesgue) volume. For example, if F is linear time invariant,

then Ψ must be a constant. Depending on the sign of this constant, the phase space volume can

expand (expanding flow) or contract (contractive flow) exponentially fast or may remain constant

(volume-preserving flow). The Liouville Theorem [32] tells us that the case of divergence-free vector

field ensures that the system is Hamiltonian. Notice that, a nonlinear vector field can be Hamiltonian

too.

In general, it’s hardly possible to evaluate the integral in Eqn. (9) analytically and thus man-

dates numerical solution. Once the solution for the joint pdf ϕ (X, t) is obtained, one can find the

marginal pdfs by integrating out the other states over their respective domains, namely

ϕ (Xi, t) =
∫
D1

...

∫
Di−1

∫
Di+1

...

∫
Dns

ϕ (X, t) dX1...dXi−1dXi+1...dXns (10)

where Di is the domain of the ith state variable at time t. Here it’s important to realize that since

the domain in the state space is deforming with time, one must know the instantaneous domain to

carry out the integration in Eqn. (10). This will be explained in more details later in the paper.

C. Illustrative Examples

We now provide some examples to clarify the ideas presented above. Specifically, we want to

illustrate how MOC enables the solution of SLE (which is a PDE) by solving ODE initial value

problem along the trajectories.
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1. 1D Example

Let’s consider the simple 1D dynamics [31] given by ẋ = −x2 with initial condition x (0) = x0.

Then the solution of this initial value problem is given by

x (x0, t) =
x0

1 + tx0
. (11)

Consequently, we have

Ψ (x (t)) = −2x (t) = − 2x0

1 + tx0

⇒ exp
(
−
∫ t

0

Ψ (x (τ)) dτ
)

= exp
(

2x0

∫ t

0

dτ

1 + τx0

)
= (1 + tx0)2 (12)

which, from (9), leads to

ϕ (x, t) = ϕ0 (x0) (1 + tx0)2 . (13)

Now we can find x0 = x0 (x, t) using (11) as

x0 =
x

1− tx
(14)

and substitute this to (13) to yield

ϕ (x, t) = ϕ0

(
x

1− tx

) (
1 +

tx

1− tx

)2

=
ϕ0

(
x

1−tx

)
(1− tx)2

. (15)

Figure 1 shows the spatio-temporal evolution of the pdf ϕ (x, t) according to eqn. (15), when the

initial pdf is chosen to be a standard normal distribution. The surface plot in Fig. 1(a) illustrates

the rise of the pdf peak with time, accompanied with a shrinkage of its support. As Fig. 1(b) shows,

as t→∞, the pdf tends to become a dirac delta distribution. This is not surprising since the origin

being the unique equilibrium of this dynamics, in the asymptotic limit, all probability mass gets in

that “sink”. Thus the support of the stationary distribution has Lebesgue measure zero.

2. 2D Example

Next, consider a planar vector field

ẋ+ x = − 2y
log (x2 + y2)

ẏ + y =
2x

log (x2 + y2)
(16)
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(a) With time, the pdf support shrinks and tends

toward the asymptotic limit of impulse function.

-2

0

2

2

4

6

0

5

(b) Stacked pdf snapshots at the initial and five consecutive

times, starting with a standard normal distribution.

Fig. 1 Evolution of the N (0, 1) initial pdf according to eqn. (15).

with given initial conditions x (0) = x0 and y (0) = y0. Looking at the form of the dynamics, we

convert (16) from cartesian to polar coordinates using the standard transformation rṙ = xẋ + yẏ

and θ̇ =
xẏ − yẋ
x2 + y2

to obtain

ṙ = −r

θ̇ =
1

log r
(17)

purely as a matter of working convenience. The initial conditions for (17) are r0 := r (0) =
√
x2

0 + y2
0

and θ0 := θ (0) = arctan
y0
x0

. From the polar equations, it immediately follows that as t → ∞,

r (t)→ 0 and |θ (t) | → ∞ implying that the origin is a globally asymptotically stable spiral for this

nonlinear system (Fig. 2). Notice however that a linear stability analysis predicts the origin to be

a stable star. In fact, one can easily solve (17) to get the trajectory in closed form

r (r0, t) = r0e
−t, θ (θ0, t) = θ0 + log

(
log r0

log r0 − t

)
, (18)

which corroborates the asymptotic behavior mentioned above. Further, one can compute

Ψ =
∂

∂r
(−r) +

∂

∂θ

(
1
r

)
= −1

⇒ exp
(
−
∫ t

0

Ψ (r (τ) , θ (τ)) dτ
)

= et. (19)

From (18), we also get

r0 (r, t) = ret, θ0 (θ, t) = θ − log
(

log r + t

log r

)
. (20)
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Thus, (19) and (20) results

ϕ (r, θ, t) = ϕ0 (r0, θ0) et = ϕ0

(
ret, θ − log

(
log r + t

log r

))
et. (21)

If the initial conditions are sampled from a uniform distribution, the transient pdfs resemble

the phase portrait of Fig. 2, converging toward a dirac delta at the origin. To examine the case

for non-uniformly sampled initial conditions, an initial pdf is taken which has a high probability

around θ = 0 and is symmetric about the same. The polar plots of Fig.3 shows the pdf contours at

t = 0, 0.2, 0.5, 1.0, 1.4 and 2.0 respectively, for the dynamics given by eqn. (16). It can be observed

that the support of the transient pdfs shrink progressively and spirally converge toward the origin.

The red (blue) color denotes high (low) probability.

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. 2 Vector field (left) and an ensemble of trajectories in the phase space (right) for the

nonlinear system given by eqn. (16).

Remark 1: The two simple examples given above illustrate how MOC solves the SLE. In

MOC, the initial value problem (IVP) given by eqn. (8) is solved along the characteristics (which

in case of SLE, are the integral curves or trajectories of the flow). Thus the integral in eqn. (9)

is a path integral computed along each trajectoy (see Fig. 4). To further clarify this, consider a

divergence-free vector field. Then (8) tells us that the joint pdf remains constant as long as we are

“riding” a particular trajectory. The value of this constant is different along a different trajectory.

Thus, a volume-preserving flow, in general, does admit a spatio-temporally evolving pdf. For the

same reason, in the above examples, initial condition was computed as a function of the current
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Fig. 3 The pdf contours computed from eqn. (21) at t = 0, 0.2, 0.5, 1.0, 1.4 and 2.0 respectively.

state and time to substitute for X (0) in ϕ (X (0) , 0) (see eqn. (14), (15) and (21)).

Remark 2: For the SLE, since the trajectories are same as the characteristic curves and

trajectories can’t intersect (due to uniqueness), the solutions of the MOC are no where discontinuous.

Further, notice that, in order to compute the inverse map of x = x (x0,p, t), of the form x0 =

x0 (x,p, t), our earlier stated assumption of the continuity of x on x0, p and t, comes into play.

III. Nonlinear Flight Dynamics for Hypersonic Entry

In this paper, we will concentrate on applying the theoretical framework described above to the

problem of hypersonic EDL modeled through Vinh’s equations [33]. We will work with two different

versions of the model, a three state model where the dynamics is assumed to be purely longitudinal,

and a more general six state model with lateral-longitudianl coupling. Both these models describe

the trajectory of the center-of-mass of the spacecraft entering into the Mars atmosphere.
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Fig. 4 In MOC based SLE method, along each sample trajectory, the probability weights are

updated during dynamics propagation. In MC method, one tries to reconstruct a histogram

to approximate such weight distribution, as a post-processing step. So the main advantage

of SLE compared to MC is the ability to update exact probability weights “on the fly” and

hence, the samples are ‘colored’ so to speak with the color-value being proportional to the

value of the instantaneous joint pdf. Red (blue) denotes high (low) value.

A. Three state model

Assuming the entire trajectory is contained in the longitudinal plane, one can write the following

non-dimensionalized three state (h, V, γ) model for non-rotating spherical Mars with zero bank angle

flight.

ḣ = V sin γ (22a)

V̇ = −ρR0

2Bc
V 2 − gR0

v2
c

sin γ (22b)

γ̇ =
ρR0

2Bc
CL
CD

V +
gR0

v2
c

cos γ
(

V

1 + h
− 1
V

)
(22c)

Here the model for Martian atmospheric density variation [34] is taken as

ρ = ρ0 exp
(
h2 − hR0

h1

)
(23)

where h2 = 20 km and h1 = 9.8 km. The mean equatorial radius of Mars will be taken as R0 = 3397

km.
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B. Six state model

Here we present the more general form of Vinh’s equations, which is a non-dimensionalized six

state (h, ζ, λ, V, γ, χ) model. This model takes the self-rotation rate (Ω) of the planet and the bank

angle (σ) into account.

ḣ = V sin γ (24a)

ζ̇ =
V cos γ sinχ

(1 + h)
(24b)

λ̇ =
V cos γ cosχ
(1 + h) cos ζ

(24c)

V̇ = −ρR0

2Bc
V 2 − gR0

v2
c

sin γ +
R2

0Ω2

v2
c

(1 + h) cos ζ (sin γ cos ζ − cos γ sin ζ sinχ) (24d)

γ̇ =
ρR0

2Bc
CL
CD

V cosσ +
gR0

v2
c

cos γ
(

V

1 + h
− 1
V

)
(24e)

χ̇ =
ρR0

2Bc
CL
CD

V sinσ
cos γ

− V cos γ
(1 + h)

tan ζ cosχ+
2R0Ω
vc

(tan γ cos ζ sinχ− sin ζ)− R2
0Ω2

v2
c

(1 + h)
V cos γ

sin ζ cos ζ cosχ

(24f)

Ω was calculated from the rotational time period of Mars, which is 24 hours 39 minutes and 35.24

seconds. The density variation is taken identical to the three-state model.

IV. Application of SLE to Some Specific Cases

Before solving SLE for the models described in the preceding section, we will examine certain

restricted cases of the same. Since the three and six-state models, in general, require numerical

solution for the pdf, considering some specific cases will give us some physical understanding of the

problem. Many case studies of this nature can be found in [14] (see Ch. 7).

A. Horizontal Flight

For horizontal flight, γ ≈ 0 and h = constant. Therefore, only the second equation remains to

be considered in (18), which becomes

V̇ = −ρR0

2Bc
V 2

⇒
∫ V

V0

dV

V 2
= −ρR0

2Bc

∫ t

0

dt [since h is constant, so is ρ ]

⇒ V =
V0

1 + ρR0
2Bc

V0t
(25)
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which implies that V decreases monotonically with time. In this case, ϕ (V, t) =

ϕ0 (V0) exp
(
−
∫ t

0

Ψ (V (τ)) dτ
)
, where Ψ (V ) =

ρR0

Bc
V . Therefore,

ϕ (V, t) = ϕ0 (V0)
[
1 +

ρR0

2Bc
V0t

]2
= ϕ0 (V0)

(
V0

V

)2

= ϕ0

(
V

1− ρR0
2Bc

V t

)
1(

1− ρR0
2Bc

V t
)2 . (26)

Thus, given an initial pdf describing the intial condition uncertainty, eqn. (26) provides an algebraic

expression for determining the pdf at any current time and velocity.

B. Vertical Flight

This specical case concerns with the vertical descent (γ = −π
2
) in a non-lifting trajectory.

Consequently, we eliminate eqn. (18c) as all terms in it are identically zero. Hence, we are left with

eqn. (18a), (18b) and (23). Substituting ρ in (18b) as a function of h, we get two first order coupled

nonlinear ODEs in h and V , shown below.

ḣ = −V (27a)

V̇ = −K1V
2e−βh +K2 (27b)

with K1 =
ρ0R0

2Bc
eh2/h1 , β =

R0

h1
and K2 =

gR0

v2
c

. With Ψ = −2K1V e
−βh, the SLE needs to be

solved numerically along with the above dynamics.

With nominal initial altitude h0 = 80 Km and nominal initial velocity V0 = 3.5 Km/sec, and

assuming 5% uniform dispersion in both h0 and V0, the SLE was solved numerically. The simulation

was repeated for 15% uniform dispersion in both h0 and V0. In both the cases, 1000 samples were

taken to represent the trajectory ensemble. Fig. 5 shows the color-coded scatter plots at t = 19.13

seconds in the h V plane with the color-value being proportional to the value of the bivariate joint

pdf at that instant. As before, red denotes high and blue denotes low value of the joint pdf. Notice

that, a larger dispersion in the initial conditions results in more spread in the point cloud at the

same instant of time.
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Fig. 5 Scatterplot snapshots for uncertainty evolution of system (23a) and (23b) with uniform

dispersions in the initial conditions.

V. Numerical Simulations

In this section, the numerical simulation set up is described for solving the SLE for the three and

six state models described in Section III. The simulation framework is provided in detail followed

by results and discussions.

A. Simulation Set up

The nominal initial conditions were taken to be h0 = 80 Km, ζ0 = 24.01◦N, λ0 = 341.03◦E,

V0 = 3.5 Km/sec, γ0 = −2◦ and χ0 = 0.0573◦. The nominal values of the parameters were taken as

Bc = 72.8 kg/m2, ρ0 = 0.0019 kg/m3 and CL
CD

= 0.3. Since the models described in Section III are

non-dimensionalized, numerical integration was performed in non-dimensional time t̃ = 0 to 0.7 with

the non-dimensional step-size of ∆t̃ = 0.01. One can easily convert it back to the physical time by

multiplying the non-dimensional time with a factor
R0

vc
. In this paper, results are presented for two

kinds of initial uncertainties, viz. 5% uniform dispersion in each variable and Gaussian dispersion

about the nominals with 10% variance along each dimension.
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B. Simulation Framework

The simulation framework comprises of three main modules as described below.

1. Sampling Initial Distribution

The initial uncertainties are specified by an initial joint pdf. Once the initial joint pdf is known,

one needs to generate a pre-specified number of samples such that they best represent that joint

pdf. For the case of uniform initial distribution, one may do a grid-based discretization or for high

dimensions, opt for a pseudo-random number generator using low discrepancy sequences like Halton

sequence [13] to avoid the ‘curse of dimensionality’. Some preliminary comparative simulation

results along these lines were reported in [35]. In this paper, samples from uniform initial pdf were

generated using multi-dimensional Halton sequence. For non-uniform initial pdfs, one need to use

probability integral transform (e.g. Box-Muller transform in case of normal distribution) methods

[36]. However, one must resort to the Markov Chain Monte Carlo [37–39] (MCMC) techniques to

achieve better computational performance for sampling any general initial pdf in high dimensions

[40].

2. Uncertainty Propagation

The samples from the initial uncertainty polytope are propagated according to the dynamics

given in Section III and the SLE is solved at each time step. Four libraries are required to achieve

this. The dynamics library specifies the nonlinear model and the atmosphere model is provided in

a separate library, which is utilized by the dynamics. Another library does gradient computation

(analytically for the present case or using finite differencing for a black box model) needed to solve

the SLE. A fourth order Runge-Kutta (RK4) based integrator was used to propagate the dynamics

and for solving the SLE. All results reported below are from the MATLAB R© implementation using

variable step-size ode45 integrator.

3. Post-processing of the joint pdf data

As the samples from the initial pdf are propagated according to dynamics, the joint pdf at any

given time is represented by the instantaneous distribution of those evolved samples. Because of
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the nonlinear dynamics, such a distribution, in general, is a scattered data set residing over the

extended state space. These evolved joint pdfs are required to compute the marginal distributions

that correspond to those typically used in EDL analysis. For doing this, one needs to isolate a

snapshot of interest and integrate out the dimensions other than whose marginal is sought. In

Section IIA, we briefly touched upon the fact that because of dynamics, the domain or the support

of the joint pdf deforms with time and the integration for marginal computation needs to be carried

out over few dimensions of this instantaneous domain. This brings forth the problem of integration

over high dimensional scattered data.

One way to tackle this problem is to interpolate these scattered data, which itself is numerically

challenging. We mention here that since the joint pdf values were computed directly by solving SLE,

it’s an interpolation problem as opposed to function approximation. Alternatively, one may attempt

the numerical integration without interpolation. For this, one can sprinkle a new set of Halton points

(prefarably more than the number of samples) inside the bounding box of this static/time-frozen

data and then use these newly sprinkled points as the quadrature points to carry out quasi-Monte

Carlo (QMC) integration [13] (see Ch. 2). The computational cost associated with this approach

comes from the evaluation of the joint pdf values at this new set of points, which can be determined

by first back-integrating the dynamics and then forward integrating the SLE for these quadrature

points.

Notice however, that for computing marginals from MC simulations, one takes a frequentist

approach and counts samples in the bins lying on the requisite slices. Since we are interested to

compare the SLE derived marginals with those obtained from MC, a similar (and computationally

less heavy than described above) method can be employed to approximate the marginals from SLE.

In the PF derived SLE method, since one has a probability weight associated with each sample,

one can do a binning similar to MC histograms. Only this time, instead of counting the number

of samples in each bin, the bin weight can be assigned as the average of the joint pdf values of the

samples in that bin (see Fig. 6). In both cases, the individual bin weights need to be normalized

with respect to the bin size and total probability weight. All marginals of PF derived SLE method

presented here, are computed in this fashion.
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Fig. 6 A schematic for computing marginals from scattered instantaneous joint pdf data.

For example, after solving the SLE for three-state Vinh’s equations with initial condition

uncertainties, in order to compute univariate marginal in h, one would take V γ slices at

different sample levels of altitude. At each such slice (the one with solid edges), one can

average out the V and γ directions using the joint pdf values as explained in Section V.B.3

and obtain a scalar value (shown by the purple arrow). One would then shift this slice at the

next h sample level (dotted slice) and repeat the exercise. This results the h-marginal vector

ϕh (h) as shown. By taking slices in other orthogonal directions, one can similarly get ϕV (V )

and ϕγ (γ). The idea can be easily extended to compute higher dimensional marginals.

C. Results and Discussion

For the three state model, it’s possible to visualize the joint pdf using three dimensional color-

coded scatter plots similar to Fig. 5. Such plots are shown in Fig. 7 for 1000 samples at t̃ =

20



0.05, 0.20, 0.30 and 0.50 with both uniform (top row) and Gaussian (bottom row) initial condition

uncertainties. It can be observed that at t̃ = 0.05, the joint pdfs are slightly perturbed from the
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Fig. 7 Scatter plots of the joint pdf with three dimensional support (h, V, γ) at et = 0.05, 0.20, 0.30

and 0.50 respectively. Columns show different times, rows signify different initial pdfs (uniform

at top and Gaussian at bottom row).

respective initials. As time progresses, the probability mass accumulates near zero altitude and

zero velocity and the flight path angle (FPA) assumes a steep value. This is in agreement with the

physical intuition as the vehicle, with high probability, slows down through the lower part of the

atmosphere.

Starting from the uniform initial joint pdf, the evolution of the univariate and bivariate marginals

for the three state Vinh’s equations, are shown in Fig. 8. The same for the Gaussian initial pdf are

plotted in Fig. 9. The univariate MC (dashed blue) and PF (solid red) pdfs are in good match.

The bivariate maginals show the general trend that PF-derived marginals (bottom row) capture the

concentration of the probability mass well (by virtue of the probability weights obtained by solving

SLE) while the MC bivariate marginals (top row) tend to smear it out (because of the histogram

approximation). This can be seen, for example, in V − γ bivariate plots. Similar trends can be

observed for the six state model. For brevity, in Fig. 10, we only show the snapshot of univariate

pdfs at t̃ = 0.30 for the six state model with uniform initial pdf.
The simulation results shown above bears testimony to the fact that with same number of
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Fig. 8 The univariate and bivariate marginals for the case of uniform initial condition uncer-

tainty at et = 0.05, 0.30 and 0.50 respectively. The simulation is for 3 state Vinh’s equations

with 5000 samples. For univariate marginals, PF results are in solid red and MC results are

in dashed blue. For bivariate marginals, PF results are in the bottom row and MC results are

in the top row.
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Fig. 9 The univariate and bivariate marginals for the case of Gaussian initial condition un-

certainty at et = 0.05, 0.30 and 0.50 respectively. The simulation is for 3 state Vinh’s equations

with 5000 samples. Conventions for the MC and PF plots are same as in the previous figure.

23



40 60 80
0

0.05

0.1

0.15

0.2

h (Km)
20 25

0.1

0.2

0.3

0.4

0.5

Latitude (degrees N)
340 360 380

0.015

0.02

0.025

0.03

Longitude (degrees E)

2 3 4
0

1

2

3

V (Km/sec)
−2 −1 0
0

0.5

1

1.5

2

FPA (degrees)
−10 −8 −6
0

0.5

1

1.5

Azimuth (degrres)

Fig. 10 The univariate marginals for the case of uniform initial condition uncertainty at et = 0.30.

The simulation is for 6 state Vinh’s equations with 10,000 samples. PF results are in solid

red and MC results are in dashed blue.

simulations, PF operator based approach can better resolve the pdf compared to MC method. This

is not surprising since the former assigns explicit probability weights computed by solving the SLE

while the latter tries to construct a pdf using crude histogram approximation. The success of the

latter (in terms of good approximation of the pdf) is heavily dependent on the number of sample

trajectories being evolved. Hence, SLE based PF methods can be computationally attractive over

MC, particularly in high dimensional nonlinear problems like spacecraft EDL, as it evolves less

number of “high initial probability” samples to achieve an accurate resolution of the pdf.

In order to quantify the closeness of the MC and PF based marginal pdfs shown before,

two information-theoretic quantities were used, viz. Kullback-Leibler (KL) divergence (∆KL) and

Hellinger distance (∆HL). The KL divergence measures the distance between two pdfs P(x) and

Q(x), and is defined as

∆KL (P||Q) :=
∫ +∞

−∞
P(x) log

P(x)
Q(x)

dx. (28)

It can be interpreted as the relative entropy between two pdfs and is a pseudo-metric (non-symmetric
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and does not obey triangle inequality). A similar quantity, Hellinger distance, is defined as

∆2
HL (P||Q) :=

1
2

∫ +∞

−∞

(√
P(x)−

√
Q(x)

)2

dx (29)

and it does obey the triangle inequality. Further, since Hellinger distance lies between 0 and 1, it

can be interpreted as the percentage distance between two densities. In Fig. 11, KL divergence and

Hellinger distance between the respective univariate marginals of the three state Vinh’s equations

are plotted for t̃ = 0.30 for the case with uniform initial pdf. The superscripts denote the respective

variables. The PF marginals are taken as the reference densities. We observe that MC marginals are

in close match with the PF ones at this instant. However, as the pdf evolves further, the difference

between the histogram-based MC and SLE-based PF marginals become more prominent, as was

qualitatively observed in Fig. 8. The two information theoretic metrics provide a quantitative

measure of the same. Fig. 12 shows the variation of these information metrics with sample size for

t̃ = 0.50. Notice the increase in the ordinate values by at least an order of magnitude, compared to

the same in Fig. 11. The exercise can be repeated for various time instances to get an idea of the

computational performance.
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Fig. 11 Variation of the KL divergence (left) and Hellinger distance (right) with no. of

samples. Snapshots are compared at et = 0.30.
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Fig. 12 Variation of the KL divergence (left) and Hellinger distance (right) with no. of samples

at the instant et = 0.50.

VI. Further Statistical Analysis

In this section, we will demonstrate few case studies pertaining to EDL specific analysis in the

SLE framework.

Case I. Tracking Uncertainty

It’s of interest to compute the probability that the flight path angle (FPA) will be within a

specified interval i.e. γmin 6 γ 6 γmax. This problem is important in the context of tracking the

spacecraft by a space-based antenna. Univariate FPA marginals (like those shown in Fig. 8, 9 and

10) can be computed at diferent times to calculate the tracking probabilities. Such information can

be crucial from mission design perspective.

Case II. Landing Footprint Uncertainty

Computing the landing footprint uncertainty has been one of the key aspects of EDL analysis.

Important decisions like landing risk evaluation and trajectory correction maneuver (TCM) design

depend on it. A list of factors contributing toward landing footprint uncertainty, can be found in

[9]. Almost all EDL analysis has been based on evolving a bivariate Gaussian in latitude and longi-

tude and thereby characterizing a 3σ landing ellipse representing the landing footprint uncertainty.
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Historically, the landing ellipses have spanned hundreds of Km (see Fig. 13).

Viking 1,2 (1976)Pathfinder (1997)

Phoenix (2008)
MER A,B (2004)

MSL (2011)

Fig. 13 Schematic comparison of landing footprints of Mars missions. To make a comparison

between their sizes, all ellipses are drawn with the same center and same orientation. The

scale on each axis is in Km (data taken from [1]). The ellipse for the upcoming MSL mission

is anticipated.

However, depending on the initial uncertainty and system dynamics, the latitude-longitude

bivariate marginal can be far from Gaussian, resulting the 3σ estimates unrealistic. On the other

hand, computing this marginal using MC method is not only computationally expensive but can

be inaccurate, for reasons discussed in Section V(C). Fig. 14 compares the latitude-longitude (ζ λ)

bivariate marginal at the final time, computed for the six state model using MC (left) and SLE

based PF (right) method. Notice that, the SLE based PF method (right in Fig. 14) predicts the

landing footprint to be at 377 degrees E and 21.3 degrees N (approx.) with maximum probability

and a very small dispersion around it. It ascertains that the landing probability everywhere else

is zero. In contrast, MC method (left in Fig. 14) can at best predict a high probability around

357–381 degrees E and 20.5–21.4 degrees N and is unable to do any further refinement of the landing

footprint uncertainty. Not surprisingly, such huge MC dispersion in latitude-longitude results 3-σ

landing ellipse spanning hundreds of Km. It’s evident that SLE based PF method outperforms MC.

Looking at such dramatic localization of uncertainty computed through SLE (Fig. 14), one

shouldn’t get confused by thinking that SLE underpredicts uncertainties. SLE simply computes

exact probability density values whereas MC approximately reconstructs these values through

histogram. Based on the approximation parameters (e.g. number of bins, overlapping or non-

overlapping bins, equal or unequal bin-size etc.), the MC method, as a piecewise constant approxi-
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mation algorithm, may underpredict or overpredict uncertainty. In either case, SLE stands superior

as exact value, irrespective of the relative size of the pdf support.
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Fig. 14 Comparison of the latitude-longitude (ζ λ) bivariate marginal pdf at the final time,

from MC (left) and SLE based PF (right) method.

Case III. Heating Rate Uncertainty

It is of interest to compute the univariate density of heating rate Q̇ (Joules/sec) given by

Q̇ =
1
4
CfρV

3S

=
1
4
Cfρ0 exp

(
h2 − hR0

h1

)
V 3S

= αV 3e−βh , φ (V, h) (say)

where α =
1
4
Cfρ0Se

h2
h1 and β =

R0

h1
. Here Cf refers to the skin-friction coefficient of the exterior

surface area of the entry capsule. Let’s introduce an auxiliary random variable ς = V , ψ (V, h).

The functions φ and ψ define a mapping (V, h) 7−→
(
Q̇, ς

)
. Jacobian (and its determinant) of this

transformation can be calculated as

J =


∂φ

∂V

∂φ

∂h

�
�
�7

1

∂ψ

∂V �
�
�7

0

∂ψ

∂h

 =

 3αV 2e−βh −αβV 3e−βh

1 0

⇒ det (J) = αβV 3e−βh. (30)

Root of the inverse mapping is found to be

(V ∗, h∗) =
(
ς,

1
β

log
(
ας3

Q̇

))
. (31)
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From (30), one can evaluate the determinant of the Jacobian at the root of the inverse mapping

given by eqn. (31) as

det (J∗) = αβς3
Q̇

ας3
= βQ̇. (32)

Since α, β, V > 0, it’s easy to verify that the mapping (V, h) 7−→
(
Q̇, ς

)
defined by the functions φ

and ψ, is bijective. Consequently, the joint density in the transformed variables
(
ς, Q̇

)
is given by

η
(
ς, Q̇

)
=
ξ (V ∗, h∗)
|det (J∗) |

(33)

where ξ ( . , . ) is the bi-variate marginal in V and h. Further, η
(
Q̇
)

=

∞∫
0

η
(
ς, Q̇

)
dς. Thus, from

(31), (32) and (33), we have

η
(
Q̇
)

=

∞∫
0

1
βQ̇

ξ

(
ς,

1
β

log
(
ας3

Q̇

))
dς (34)

Fig. 15 shows the univariate pdfs for Q̇ per unit area (in W/cm2) for the three state model (left)

and for the six state model (right), both with uniform initial condition uncertainty. The solid (red)

lines show the SLE result and the dashed (blue) lines show the MC based histogram approximation.
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Fig. 15 Heating rate pdf snapshot at et = 0.30 for the 3 state model with 5000 samples (left) and

for the 6 state model with 10,000 samples, both with uniform IC uncertainty (right). Solid

red lines show SLE derived pdfs, dashed blue lines show MC based histogram approximation.
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Case IV. Chute Deployment Uncertainty

Quantification of uncertainty for the purpose of chute deployment is of growing interest as future

Mars missions are expected to deploy at higher Mach numbers [1]. It is important to schedule the

deployment in an Mach number (M) and dynamic pressure (q) regime such that the parachute

can bear the stress and provide the requisite aerodynamic deceleration performance. The question

considered here is whether the bivariate density in M and q is contained in a prespecified M -q

box. If significant amount of probability mass lies outside this M -q box at the moment of chute

deployment, then it would be probabilistically unsafe to deploy the supersonic parachute at that

moment. From a mission design perspective, one can repeat this analysis to find the best time to

deploy the chute for robust performance. Historically, for DGB parachutes, the Viking qualification

program has guided the design M -q box dimension to be M = 1.1− 2.2 and q = 239− 850 Pa [12].

To characterize the Mach-q uncertainty, one needs to find the transformed bivariate density

η (M, q) from the bivariate marginal density ξ (V, h). The mapping considered here is (V, h) 7−→

(M, q) and is defined by

M =
V√

γR?T (h)
, φ (V, h) (35)

q =
1
2
ρV 2 =

1
2
ρ0 exp

(
h2 − hR0

h1

)
V 2 = ΛV 2e−βh , ψ (V, h) (36)

where Λ =
1
2
ρ0e

h2
h1 and β =

R0

h1
, as defined in Case III. Here γ is the ratio of specific heats and R?

is the difference between them (assuming ideal gas). As before, one must find the Jacobian of this

transformation and compute the determinant as

J =


∂φ

∂V

∂φ

∂h
∂ψ

∂V

∂ψ

∂h

 =

 1√
γR?T (h)

− V
2
√
γR?(T (h))3/2

dT
dh

2ΛV e−βh −ΛβV 2e−βh

 (37)

⇒ det (J) =
ΛV 2e−βh√
γR?T (h)

[
1

T (h)
dT

dh
− β

]
. (38)

Now one can proceed to compute the roots of the inverse mapping i.e. h and V as functions of M

and q. To do this, one can substitute V 2 = M2 γR?T (h) (from (28)) in eqn. (36) to get

T (h) e−βh =
q

ΛM2γR?
= C (say) (39)
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At this point, let’s assume T (h) = −A−Bh for Mars atmosphere. Then (39) leads to

A+Bh+ Ceβh = 0. (40)

This transcendental equation in h can be solved in closed form in terms of the Lambert W function

h∗ = −A
B
− 1
β
W0

(
Cβ

B
e−

Aβ
B

)
(41)

provided Bβ 6= 0, which holds true for the case under consideration. Notice that, since β,B,C > 0,

the associated Lambert W function is single valued (zeroth branch (usually referred as the principal

branch) of W , denoted as W0) and consequently (41) is the unique solution of eqn. (40). It should

be emphasized here that the constant A is a negative scalar. This is because the temperature is

given by T (in ◦C) = −a−Bh where 273.15 > a > 0, B > 0 and h is in meters. Hence, the absolute

temperature T (in Kelvin) = −a − Bh + 273.15 = −A − Bh with A = a − 273.15 < 0. This will

avoid any confusion about the sign of h∗.

Substituting (41) in (28), one can obtain

V ∗ = M
√
γR?T (h∗) = M

√
γR?B

β
W0

(
Cβ

B
e−

Aβ
B

)
. (42)

Thus the root for the inverse mapping is the doublet (V ∗, h∗) given by (41) and (42), where it’s

re-emphasized that C is a function of both M and q, as given in (39).

Combining (38), (41), (42) and noting that T (h∗) =
B

β
W0

(
Cβ

B
e−

Aβ
B

)
, one can derive

|det (J∗) | = ΛM2e
Aβ
B

√
βγR?B


(
Cβ
B e−

Aβ
B

)
+ e

W0

„
Cβ
B e−

Aβ
B

«
√
W0

(
Cβ
B e−

Aβ
B

)
 , (43)

where the definition of Lambert W function x = W (x) eW (x), has been utilized (see Appendix A

for details). Finally, the joint bivariate density in (M, q) is given by

η (M, q) =
ξ (V ∗, h∗)
|det (J∗) |

(44)

where the right-hand-side needs to be evaluated using (41), (42) and (43). Notice that, instead of

using Lambert W function, one may also proceed by numerically solving (40).

Appendix B lists the temperature model and associated numerics used in the simulation for

computing the Mach number. The Mach-q bivariate marginals computed from eqn. (44) are plotted
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in Fig. 16 at t̃ = 0.30 and 0.50. The first row shows the plots for the three state model with uniform

initial condition uncertainty, the second row corresponds to the same model with Gaussian initial

condition uncertainty. Plots in the last row are for the six state model with uniform initial condition

uncertainty and follow similar trend as the corresponding three state case. With the Mach-q box

dimension specified earlier, one can notice that for a three state dynamics, deploying a parachute

at t̃ = 0.50 will have significant reliability with Gaussian initial uncertainty compared to uniform

initial uncertainty.

VII. Conclusion

A framework, based on the stochastic Liouville equation (SLE), is provided for dispersion analy-

sis in planetary EDL. It was argued that in this framework, one can do a systematic initial condition

and parametric uncertainty analysis by spatio-temporally evolving the joint pdf through the SLE.

Various analytical and numerical examples are given to illustrate how the method of characteristics

(MOC) can be used to directly solve SLE, thereby making this framework not only computation-

ally more tractable than traditional Monte Carlo (MC) analysis, but also more accurate. For the

EDL problem, results are provided for both three-state and six-state Vinh’s equations for hyper-

sonic entry in Mars atmosphere. Further, some case studies were presented to demonstrate how

this framework naturally enables EDL specific statistical analysis. An initial implementation of

the methodology described here, is now available in NASA JPL’s DSENDS simulator system for

high-fidelity numerical experiments [41].

Appendix

A. Lambert W Function

The present section is intended to provide an overview of the Lambert W function. This function

(W ) is defined as the inverse of the function f (W ) = W eW , where W is any complex number. The

function satisfies the equation

W (z) eW (z) = z (45)
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Fig. 16 Bivariate pdf of the Mach number and dynamic pressure (Pa) at et = 0.30 and 0.50. First

and second rows are three state model with uniform and Gaussian initial pdf respectively.

The third row corresponds to the six state model with uniform initial pdf.
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for every complex number z. This equation has infinite number of solutions, most of them being

complex. Thus,W is a multi-valued function. The different solutions of eqn. (45) are called different

branches of W , and are denoted as Wk. The index k takes its values from an index set Z (the set of

integers). Thus, different solutions or branches of eqn. (45) are W0 (z) ,W±1 (z) ,W±2 (z) etc. The

case of particular interest is when the solution is real. Depending on the domain of W , one may

have zero, one or two real solutions; in each case, the remaining solutions are complex. It’s easy to

see from (45) that W (x) is real provided x ∈ [− 1
e , ∞) ⊂ R. Fig. 17 shows how W (x) varies with

x. From the figure, it follows that when x ∈ [− 1
e , 0), W is double valued (two branches W0 (solid)

and W−1 (dashed)) and for x ∈ [0,∞), W is single valued (only W0 branch). In other words, unique

real root occurs only when the domain is restricted to the non-negative reals.
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Fig. 17 Real-valued Lambert W function

The readers are encouraged to refer the paper by Corless et. al. [42] for an excellent account

on Lambert W function from both theoretical and applied point of view. Two more significant

references geared towards applications are [43] and [44].

B. Computing Mach number

Case IV of Section VI discusses the quantification of chute deployment uncertainty by com-

puting the Mach-q bivariate pdf. Eqn.(28) modeled the Mach number as M =
V√

γR?T (h)
. The

denominator
√
γR?T (h) represents the speed of sound. In this section, we describle how to compute

the quantities γ, R? and T (h) in the present context.
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Table 1 Different types of molecular DOFs

Type # translational DOF # rotational DOF # vibrational DOF

Linear molecule 3 2 3n− 5

Nonlinear molecule 3 3 3n− 6

Modeling γ

The ratio of specific heats (γ) is modeled as

γ =
f + 2
f

(46)

with f being the total number of degrees-of-freedom (DOF) of the molecule, which is further given

by f = 3n, where n is the number of atoms in a molecule. The contribution to total number of

DOFs comes from three types, viz. translational DOFs, rotational DOFs and vibrational DOFs; the

amount of contribution from each type depends on whether the geometric arrangement of the atoms

in the molecule are linear or nonlinear (see Table 1).

At low temperature, the vibrational DOFs are not excited. For example, terrestial dry air,

being primarily a mixture of diatomic gases (approx. 78% nitrogen and 21% oxygen), has only 3

translational and 2 rotational DOFs at low temperature. Hence γlow
air =

5 + 2
5

= 1.4. But at high

temperature, all f = 3× 2 = 6 DOFs are excited and γhigh
air =

6 + 2
6
≈ 1.33.

Atmosphere in Mars, being largely constituted of (approx. 95% by volume) triatomic carbon

dioxide (a linear molecule), has total 5 molecular DOFs at low temperature and 9 molecular DOFs at

high temperature. In this paper, for the problem of hypersonic entry at upper Martian atmosphere

(typically more than 7 Km altitude), γ = 1.4 is considered while for supersonic descent through

thicker (and “warmer”) atmosphere (below 7 Km altitude), γ =
11
9
≈ 1.22 is assumed.

Modeling R?

The difference between specific heats (R?), sometimes called specific gas constant, is given by

R? =
R

M
(47)
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where R = 8.3145 J mol−1 K−1 is the universal gas constant andM is the molar mass of the gas

or gas mixture (in Kg mol−1). For carbon dioxide, M = 44.01 × 10−3 Kg mol−1 which leads to

R? = 188.9230 J Kg−1 K−1 (using eqn. (47)).

Modeling T (h)

In Mars atmosphere, the variation of temperature (T ) with altitude (h), usually termed as the

lapse rate, can be modeled as the following piecewise linear function [45]

T (h) =


−23.4− 0.002220 h for h > 7000

−31.0− 0.000998 h for h < 7000

(48)

where T is in degree Celcius and h is in meters.
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