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Abstract 
 

The orbit determination of the satellite, just after injection into the orbit, is crucial for the 
satellite tracking and planning of various immediate maneuvers required. Generally, 
Extended Kalman Filter (EKF), which is a suboptimal nonlinear implementation of linear 
Kalman filter, is employed for the real time orbit determination. However, the divergence 
of the EKF can not be ruled out, or at least a poor convergence may creep in even after 
employing various methods to make it adaptive by injecting noise. The divergence may 
occur due to errors in modeling the system, finite precision arithmetic and associated 
truncation/round-off errors and large errors can be attributed to a priori estimate and 
covariance. The artificial noise injection method, generally used for making the state 
covariance matrix positive definite, may not lead to proper convergence due to the 
problems mentioned above. In this paper a fuzzy state noise driven adaptive EKF which 
is based on spring- mass-damper analogy, has been proposed for orbit determination. The 
formulation makes the filter faster in convergence in the real time orbit determination 
application. A comprehensive simulation on PSLV-C1 data has been carried out to show 
the better convergence with the proposed fuzzy model. 
 
 

INTRODUCTION 
 
The problem of orbit determination [1] is 
of considerable significance for the early 
initiation of action for on-board 
operations including satellite tracking 
and control. The ability of Kalman filter 
[2] to handle noisy measurements and 
process noise in dynamics has made it a 
natural choice for orbit determination 

problem. Unlike simpler but time 
consuming batch processing techniques, 
the recursive nature of Kalman filter 
requires only the latest estimates, 
observations and corresponding 
variances of the errors to be retained, 
leading to significant saving in data 
storage. This makes it suitable for real 
time orbit determination. Extended 
Kalman filter (EKF), a suboptimal 
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nonlinear implementation of linear 
Kalman filter, uses state or observation 
residuals to ensure the positive 
definiteness of the state covariance 
matrix. However, modeling errors and 
input statistics may degrade the 
numerical performance of EKF leading 
to the loss of positive definiteness of 
state covariance [3, 4]. Measurement 
bias and poor a priori estimate and 
covariance exacerbate the situation. 
Artificial noise injection technique is 
often employed to prevent the 
covariance matrix from diminishing too 
rapidly. Since the filter is suboptimal, 
the convergence is quite poor even when 
the noise covariance matrix is 
constructed based on random noise. It is 
required that Kalman gain must 
correspond to the error in the state. 
Hence, several adaptive noise models 
have been proposed [5, 6] to formulate 
the driving noise covariance matrix Q, 
either based on observation residuals or 
based on state residuals so as to keep the 
Kalman gain just suitable. 

In this paper, the process noise 
covariance matrix has been formulated 
using fuzzy state residuals. The state 
residuals and their derivatives were 
computed by a moving window fuzzy 
regression method. A damping analogy 
was then used to construct the diagonal 
elements of the state noise covariance 
matrix to ensure the positive 
definiteness. As shown in the simulation 
results, a better convergence is achieved 
by the method proposed.   

The rest of the paper is organized as 
follows. The next sections describe the 
orbit determination problem followed by 
a brief note on EKF. The adaptive fuzzy 
state noise driven filter is illustrated in 
the subsequent section. Finally 
simulation results are presented, 
followed by conclusion. 

ORBIT DETERMINATION PROBLEM 
 

Orbit determination is the process of 
estimating parameters which completely 
describe the motion of an orbiting 
satellite, artificial or natural, utilizing a 
set of observations gathered either from 
on-board sensors or from one or more 
ground stations [7, 8]. Precise 
determination of an orbit is crucial for 
planning orbit maneuvers, anticipating 
eclipses, search and rescue satellite aided 
tracking (SARSAT) [9], accurate orbit 
control [10] and efficient functioning of 
navigation satellite time and ranging 
(NAVSTAR) systems [11].   

Unlike generalized orbit determination 
(GOD), preliminary orbit determination 
(POD) has several constraints [8] which 
necessitate a suitable filtering technique. 
Inaccuracy in the initial estimates of 
position and velocity, and the 
requirement to process the data in real 
time makes the filter selection even more 
crucial. The observational data consists 
of the range, range rate, azimuth and 
elevation over a number of time steps as 
recorded from one or more ground 
stations, starting from a specified Julian 
date.  
   

EXTENDED KALMAN FILTER 
 
The purpose of a filter is to fit an orbit to 
the observational data in order to achieve 
some specified criterion like maximum 
likelihood, minimum variance or least 
squares [12]. Since 1809, a large number 
of estimation techniques have been 
applied till date to the orbit 
determination problem. Table I, based 
on the listing in [7], summarizes the 
various estimators for the orbit 
determination problem.  

Although linear Kalman filter (LKF) 
was  applied    successfully   for  satellite  
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Table I. Orbit determination filters and their applications

Filter Type Applications 
Gaussian least squares 
differential correction 

(GLSDC) 

 
Batch 

Iterative 

Vision based navigation (VISNAV) 
sensor systems for spacecraft docking 
and formation flying [13], various non 
linear estimation problems [14] 

 
 

EKF 

 
 

Recursive 

SARSAT [9, 15], LANDSAT-4 [16, 
17], LEO satellite [18], HEO satellite 
[19], autonomous orbit determination 
using horizon scanner measurements 
[20]  

 
Adaptive EKF 

 
Recursive 

Relative navigation system for low 
Earth orbit (LEO) formation estimation 
using carrier-phase differential GPS 
[21], re-entry problems [22]  

Square root information 
Filter (SRIF) 

 
Sequential 

Apollo Lunar missions, Mariner 9 Mars 
orbiter, Mariner 10 Venus-Mercury 
space probe [23]  

UD filter (UDF) Recursive Viking Mars, Voyager Jupiter 
spacecraft  

 
 
orbit determination [27], it may not be 
adequate for problems involving very 
high degree of non-linearity. The EKF 
performs better than the LKF when large 
differences occur in the observational 
data.  
 
Divergence in Kalman filters 
 
Mathematical description of any 
dynamical system suffers from intrinsic 
modeling errors due to inadequate 
system knowledge and errors introduced 
in the process of linearization. The 
situation gets further aggravated by the 
machine dependent truncation / round-
off errors. As a result the estimates drift 
away from the true states leading to a 
growth of residuals. This phenomenon, 
commonly termed as ‘divergence’, is 
characterized by statistical inconsistency 
between the actual estimation errors and 
the error covariance matrix resulted from 
the filter [8].  

The causes of divergence in Kalman 
filters are summarized below:  

1. Discrepancies between the 
mathematical model used to derive 
the filter equations and the actual 
condition under which filter must 
operate. These include neglecting 
higher order terms in gravitational 
potential and inaccurate estimation 
of the gravity coefficients. 
 

2. Existence of the dynamic bias [24] 
due to errors in the ballistic 
coefficients.  

 

3. Round-off errors caused by digital 
computer implementation. An 
illustrative example of Kalman 
filter divergence due to single 
precision arithmetic (IBM 7090) 
can be found in [12].  

 

4. Large errors in the initial 
assumption of the state vector and 
its covariance.   
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5. Shift in the point of divergence, if 
any, due to the improper choice of 
state vector elements [25]. 

 

Examples of Kalman filter divergence 
are reported in [26, 27]. In the Mariner 
project, a mid-course correction sent by 
the ground controllers, was completely 
ignored by the on-board EKF as the 
filter believed that all states were well 
known and no correction was needed. 
Such a behavior of a Kalman filter is 
commonly termed as ‘smugness’ [27] 
and is exhibited when divergence occurs. 
As a result of this, the state covariance 
matrix P, and hence the Kalman gain 
matrix K, diminishes rapidly. 
Consequently, the observations do not 
improve the state estimates any further. 
 
Divergence Control 
 
To control the divergence of a Kalman 
filter, one must ensure the positive 
definiteness of the state covariance 
matrix P [28]. Various attempts have 
been made to meet this requirement. 
Chodas [15] attempted  to  diagonalize P  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

at the end of each time step. Later 
Brown and McPherson [29] showed that, 
it is sufficient to diagonalize P at the end 
of the first estimation step only. Some 
attempts have also been made to keep 
the values of the off-diagonal elements 
of P below a threshold noise level. The 
threshold was either determined by the 
magnitude of the diagonal entries [8] or 
determined experimentally [30]. To 
combat the divergence due to dynamic 
biases, Schmidt [31] and Pines [32] have 
suggested modification of the filter 
equations without increasing the number 
of state variables. The often employed 
artificial noise injection [33, 34, 35] 
technique does not guarantee the 
positive definiteness of the state noise 
covariance matrix since large number of 
simulations is needed for adjusting the 
process noise.  

 Adaptation of EKF with driving noise 
formulation can ensure better 
convergence. Fig. 1 depicts various 
noise driven adaptive filtering 
techniques [36], employed to circumvent 
the  divergence  problem. The  structural  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Noise models based on 
state residuals 

Noise models based on 
observation residuals 

Statistical Technique Structural Technique 

Noise Driven Adaptive Methods

Fig. 1. Noise driven adaptive methods 
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technique estimates the un-modeled 
accelerations and is computation 
intensive. Statistical technique, in 
contrast, is suitable for real time orbit 
determination. Either observation 
residuals or state residuals can be used to 
formulate the process noise covariance 
matrix (Q). Wright [37, 38, 39] pointed 
out that, the process noise in orbit 
determination problem arises from the 
uncertainty in the force model and hence 
the process noise covariance matrix Q 
must be formulated as a function of 
system’s physical processes. Based on 
the work of Kaula [40], he derived a 
process noise function for the errors in 
the gravity model. It has been shown 
[41] that, such physically defined filters 
are stable, robust and not fragile. 

Both the statistical techniques attempt 
to derive a mathematical model of Q 
assuming it to be diagonal. In the first 
method, diagonal elements are 
constructed using the means and 
standard deviations of the observation 
residuals. Three such models are 
proposed in [6]. The second method uses 
state residuals and their derivatives, 
instead of observation residuals, to 
formulate Q. This approach eliminates 
the need to tune the filter (determination 
of noise participation constants), which 
was imperative in the former. Another 
drawback of the observation residual 
approach is that, the dimensional 
consistency of Q permits only the use of 
range and range rate residuals, 
neglecting the azimuth and elevation 
residuals, which are equally important 
[42]. A damping analogy has been used 
in [6] to formulate the state residual 
based noise model. The present paper 
proposes a fuzzified formulation for the 
same to ensure better convergence. 
   

 

ADAPTIVE FUZZY STATE NOISE 
DRIVEN EXTENDED KALMAN 

FILTER   
 
Based on the state residual noise model, 
process noise covariance matrix Q has 
been proposed [6] to be formulated as 
 

                      | | ijQ x x δ=                  (1) 
 

where x  is the state residual, x  is the 
derivative of the same and ijδ  stands for 
Kronecker delta. This model needs the 
computation of x  from the discrete 
state residuals available from the 
predictor step of the EKF. One simple 
way to compute the derivatives of the 
state residuals is to construct a fixed size 
data window and to fit a straight line 
segment through the state residuals 
inside that window using least square 
criteria. This operation has to be 
performed for each element of the state 
residual vector and the slopes can be 
found accordingly. Earlier results [42] 
have shown that, this approach of 
constructing driving noise covariance 
matrix is more robust than the usual 
artificial noise injection method where Q 
is constructed through ad hoc injection 
of random noise. It was observed that a 
better way of finding the derivatives of 
state residuals may improve the 
performance of the filter. Furthermore, 
there remained some ambiguity in 
finding the goodness of fit and in the 
fitting criterion. This prompted the 
authors to apply a linear fuzzy regression 
model to calculate the slope of the 
straight line fitted through the predicted 
state residuals inside the data window. 
The fitting criterion was to minimize the 
spread (fuzziness) of the state residuals 
instead   of  minimizing  the  least square  
errors. This  allowed  the EKF to capture  
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the inherent ambiguity in the state 
residuals, which otherwise was not 
accounted.  
 
Fuzzy Linear Regression Model 
 
Since Tanaka et al [43] first proposed 
the fuzzy linear regression (FLR) 
problem in 1982, many attempts have 
been made to modify the basic algorithm 
to make it more versatile. FLR still 
remains a vibrant research topic 
receiving contributions from many 
research groups and individuals. FLR 
models can be broadly classified into 
two classes: possibilistic models and 
least square models. The two models 
differ in their optimization criteria.  

Various possibilistic models can be 
found in [44, 45, 46]. Later Tanaka 
simplified the possibilistic FLR problem 
as interval linear regression problem [47, 
48]. To achieve better performance, 
these models were coupled with neural 
network [49, 50, 51, 52], genetic 
algorithm [53, 54, 55] and Monte Carlo 
method [56]. Ordinary least square 
models and its variants for FLR can be 
found in [57-67]. For a more detailed 
discussion on the theoretical aspects of 
FLR, the interested reader can refer [68-
90]. Various applications of FLR are 
reported in [91-101]. 

In this paper, Tanaka’s original model 
of possibilistic FLR has been applied to 
find the slope of the state residuals 
inside a fixed data window. In 
conventional linear regression algorithm, 
the prime objective is to find the 
constants 0 1 2, , ,...., na a a a , where the 
dependent variable (state residual x  in 
the present case) is expressed as a 
function of the independent variable 
(time t ) as follows: 

 

0 1 1 2 2( , ) ... n nx f t a a a t a t a t= = + + + +  (2) 

 In FLR, the dependent variable ( x ) 
is allowed to be fuzzy (to account the 
imprecision in the orbit determination 
process and hence in the prediction of 
the EKF). Time, being the independent 
variable, is crisp. The regression 
constants are assumed to be fuzzy and 
need to be determined. Thus the 
regression equation for FLR becomes:    

0 1 1 2 2( , ) ... n nx f t A A At A t A t= = + + + +  (3) 
 

where iA  is the i th fuzzy coefficient and 
0,1,2,...,i n= . Here it is assumed that 

each of these fuzzy coefficients can be 
represented as a symmetric triangle. The 
membership function for iA  is shown in 
Fig. 2, where ic  is the spread (half-width 
of the base) and ip  is the mid point of 

the base for fuzzy number iA . Thus   the   
 

     
 
 

 
 
  
 
 
 
 
 
 

 
 
 
 
aim of the fuzzy regression problem 
considered here is to determine a family 
of such symmetric triangles representing 
all the coefficients in the FLR formula 
(equation 3). From this geometric 
representation, the analytical  expression  
 

( )
IA aμ  

Fig. 2. Membership function for iA   
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for iA  can be found as: 
 

⎪
⎩

⎪
⎨

⎧ −
−

=
0

||
1

)( i

ii

iA c
ap

a
I

μ     (4) 

 

The non-zero value occurs when 
iiiii cpacp +≤≤− , otherwise the 

value of the membership function 
remains zero. Thus each coefficient of 
regression (which is a fuzzy number) is 
characterized by two crisp values: spread 
and the mid point of base. Hence one 
can represent the vector of fuzzy 
coefficients ( A ), to be made of two 
vectors: the spread vector ( c ) and the 
mid point vector ( p ), given by: 
 

{ }0 1 2 ... nA A A A A p c⎡ ⎤= =⎣ ⎦    (5) 
   

where { }0 1 2 ... np p p p p= and 

{ }0 1 2 ... nc c c c c= . Thus the 
equation (3) can be modified as: 
 

0 0 1 1 1( , ) ( , ) ... ( , )n n nx p c p c t p c t= + + +  (6)   
   

Just like the membership functions of 
the fuzzy coefficients, the membership 
function of the fuzzy dependent variable 
( x ) is given by: 

 

max(min [ ( )])
( )

0
Ii iA

x

a
x

μ
μΔ

⎧⎪Δ = ⎨
⎪⎩

 (7) 

  

The non-zero value occurs when 
{ | ( , ) }a x f t a φΔ = ≠ , otherwise the 
value of the membership function 
remains zero. Substituting (4) in (7), 
equation (8) can be obtained. Now it can 
be observed that, the algebraic form of 
equation (8) is similar to (4), and hence, 
the membership function for the fuzzy 
dependent variable, can also be 
geometrically represented as symmetric 
triangle,   with   redefinition   of  the mid  

1

1

| |
1 , 0

| |

( ) 1 0, 0
0 0, 0

n

i i
i

in

i i
i

x i

i

x p t
t

c t

x t x
t x

μ

=

=

Δ

⎧
Δ −⎪

⎪ − ≠
⎪
⎪
⎪

Δ = = Δ =⎨
⎪ = Δ ≠⎪
⎪
⎪
⎪
⎩

∑

∑
    

(8) 
 
point and spread. The new value of mid 

point is equal to ∑
=

n

i
ii tp

1
and the new 

spread becomes∑
=

n

i
ii tc

1
|| .  

At this point, it is desired to determine 
the optimum fuzzy coefficients OPTA  
such that the confidence level in the 
corresponding dependent variable 
remains more than a specified threshold 
value ( h ), i.e. 

 

           ( )
jx jx h j Nμ +

Δ Δ ≥ ∀ ∈       (9)     
 

Here N +  stands for the set of positive 
integers. In other words, one needs to 
find the fuzzy coefficients such that the 
spread of the fuzzy output is minimized. 
Tanaka et al [43] formulated the 
objective function for this optimization 
problem as: 
 

       0
1 1

min
m n

f i ij
j i

O mc c t
= =

⎧ ⎫
= +⎨ ⎬

⎩ ⎭
∑∑      (10) 

 

where 0 1 1,2,...,jt j m= ∀ = . This 
objective function fO  needs to be 
minimized subjected to two inequality 
constraints (derived by Tanaka et al [43] 
from (9)) given by (11) and (12): 
 

         
0 0

(1 )
n n

j i ij i ij
i i

x p t h c t
= =

≥ − −∑ ∑       (11) 
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0 0

(1 )
n n

j i ij i ij
i i

x p t h c t
= =

≤ + −∑ ∑            (12) 

 
Equation (11) and (12) represent total 
m2 constraints. Now this becomes a 

linear programming problem, which 
must be solved to find the mid points 
and spreads of the fuzzy coefficients. 
 
Constrained Optimization with Linear 
Programming using simplex Algorithm 
 
A code has been written by the authors 
which solves the aforementioned linear 
programming problem using simplex 
algorithm (with artificial variables and 
big M method). It can be noted that, 
unlike conventional simplex algorithm, 
the present algorithm needs to be 
customized since the fuzzy requirement 
of equation (9) poses two sided 
constraint in the form of (11) and (12). 

This code results the values of fuzzy 
coefficients (i.e. the mid points and 
slopes) for a single straight line segment 
fit. These values are used in constructing 
the elements of matrix Q as explained in 
the next section.  
 

SIMULATION RESULTS 
 

A data window of fixed size (say λ) is 
constructed and the predicted values of 
state residuals are passed through this 
window. A straight line segment is fitted 
(using FLR) through the predicted state 
residual values within this window and 
its slope is found. This slope value is 
assigned to the derivative of the first 
state residual value inside the window 
(to be used for equation (1)). Now the 
window is shifted by one data position 
and the same is repeated. It can be noted 
that, the procedure runs in real time, 
since to make a good prediction of the 
next state residual, the driving noise 
covariance matrix must use equation (1) 

with the already passed value of slope. 
This process runs in parallel for all the 
six state residuals ( , , , , ,x y z x y z ). 
If, during the entire run of the code, total 
number of predictions for each state 
residual isΠ , then ( 1)λΠ − +  slopes are 
computed for each residual. Total 
number of slopes is, of course, six times 
this value. 

In this paper, results are presented for 
simulations performed on PSLV-C1 
data. A data window of size 10 (i.e. 
λ=10) has been used. The values of ‘big 
M’s (for the six types of state residuals) 
are chosen to be 1000 times larger than 
the average values of the corresponding 
state residuals, leaving the few starting 
values because of large initial errors. 
The sampling time is one second and for 
the first 10 seconds a Bayesian filter is 
used. All the results of this fuzzy 
adaptive state noise driven EKF model is 
compared with the results of a similar 
state noise driven EKF with least square 
straight line fitting for the same data. For 
comparison purpose, both the 
simulations were carried out with same 
size (λ=10) of data window. In all the 
plots presented in this paper, the solid 
curves represent the result for the case 
when driving noise is constructed using 
least square fit and the dotted curves 
represent the case when the same is done 
using FLR.       

In Fig. 3 – Fig. 8, orbit parameters are 
plotted in the order of semimajor axis 
(a), eccentricity (e), inclination (i), nodal 
angle (Ω), argument of perigee (ω) and 
true anomaly (θ). These figures reveal 
that, though both least square and FLR 
curves show initial oscillations, for the 
first four parameters, the FLR curve 
sharply comes to the converged value, 
quicker than the least square curve and 
then settles down with few minute 
oscillations      around    that    value.   In  
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Fig. 3. Semimajor axis (a) estimated by the EKF 

Fig. 4. Eccentricity (e) estimated by the EKF 

Fig. 5. Inclination (i) estimated by the EKF 

Fig. 6. Nodal angle (Ω) estimated by the EKF 

Fig. 7. Argument of perigee (ω) estimated by the EKF 

Fig. 8. True anomaly (θ) estimated by the EKF 
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contrary, the least square curve takes 
longer to settle, with much greater 
spread of oscillations. 

Particular observation of Fig. 7, at first 
glance, indicates that for first 50 
seconds, the FLR curve undergoes 
severe oscillation compared to the least 
square curve. This, however, is a result 
of the fact that the value of the argument 
of perigee (ω), in both the cases, remain 
close to the 360○/0○ line in the angular 
plane. In the least square curve, the 
oscillation remains confined mostly in 
one side of the dividing line (hence the 
curve seems more or less steady in the 
neighborhood of 360○). However, in the 
FLR curve, since the oscillation of the 
numerical values often cross this 
dividing line, seemingly large jumps 
show up. In Appendix 1, the angular 
histograms are plotted to show the 
distribution of values of argument of 
perigee, for both the least square (Fig. 
A1) and FLR (Fig. A2) case.      

Fig. 9 – Fig. 12 depict the observation 
residuals in the order of range residual 
( ρ ), range rate residual ( ρ ), azimuth 
residual ( Az ) and elevation residual 
( El ). Although for range and range 
rate residuals the results of the least 
square and FLR curve are almost 
comparable, in the case of azimuth 
residual (Fig. 11), the FLR curve has a 
smaller value of  largest  overshoot  with  

 
 

 
 
 
 
 
 
 
 
    
         

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

lesser spread. In case of elevation 
residual (Fig. 12), the FLR curve reaches 
the minimum value quicker than the 
least square curve.      

Fig.9. Range residual ( ρ )  

Fig.10. Range rate residual ( ρ )  

Fig.11. Azimuth residual ( Az )

Fig.12. Elevation residual ( El ) 
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CONCLUSION 
 
This paper attempted the fuzzification of 
the state residual based formulation of 
process noise covariance matrix, in order 
to ensure positive definiteness of the 
state covariance matrix. Fuzzy linear 
regression (FLR) has been used with a 
fixed size data window model to 
compute the slopes of the state residuals 
and thereby diagonal elements of the 
driving noise covariance matrix were 
formulated based on a spring-mass-
damper system analogy. The process of 
finding slopes through a possibilistic 
fuzzy regression model allowed to 
capture the inherent ambiguity of the 
orbit determination process using EKF. 
Kalman filter being a stochastic 
estimator, captures the probabilistic 
aspect of the process. The fuzzy 
formulation can aid it to reflect the 
possibilistic nature of the problem as 
well. The improvement of the results, no 
matter to what extent, is a testimony for 
this fact. 

The authors, in the retrospect, agree 
that though the fuzzification of the state 
residuals for the formulation of driving 
noise covariance matrix makes the 
response of the filter quicker, further 
improvements can be made by having a 
more elegant formulation of the noise 
covariance matrix. Moreover, it was felt 
that, a serious attempt should be made to 
make the filter more robust. With these 
considerations in mind, the paper makes 
an open-ended conclusion.   

 
APPENDIX 1 

 
The angle histograms shown below 
illustrate the distribution of numerical 
values of argument of perigee (ω). Each 
bin holds values within that particular 
angular range; the length of the bin 

(shown on radial scale) signifies the 
number of values present in that bin.  

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.A1. Angular distribution of (ω): least square case  

Fig.A2. Angular distribution of (ω): FLR case  
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