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Abstract

This paper presents a probabilistic model validation methodology for nonlinear systems in time-domain. The proposed formula-
tion is simple, intuitive, and accounts both deterministic and stochastic nonlinear systems with parametric and nonparametric
uncertainties. Instead of hard invalidation methods available in the literature, a relaxed notion of validation in probability is
introduced. To guarantee provably correct inference, algorithm for constructing probabilistically robust validation certificate
is given along with computational complexities. Several examples are worked out to illustrate its use.
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1 Introduction

A model serves as a mathematical abstraction of the
physical system, providing a framework for system anal-
ysis and controller synthesis. Since such mathematical
representations are based on assumptions specific to the
process being modeled, it’s important to quantify the re-
liability to which the model is consistent with the phys-
ical observations. Model quality assessment is impera-
tive for applications where the model needs to be used
for prediction (e.g. weather forecasting, stock market)
or safety-critical control design (e.g. aerospace, nuclear,
systems biology) purposes.

Here it is important to realize that a model can only be
validated against experimental observations, not against
another model. Thus a model validation problem can be
stated as: given a candidate model and experimentally
observed measurements of the physical system, how well
does the model replicate the experimental measurements?
It has been argued in the literature [3–6] that the term
‘model validation’ is a misnomer since it would take
infinite number of experimental observations to do so.
Hence the term ‘model invalidation’ or ‘falsification’ [7]
is preferred. In this paper, instead of hard invalidation,
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we will consider the validation/invalidation problem in
a probabilistically relaxed sense.

1.1 Related literature

Broadly speaking, there have been three distinct frame-
works in which the model validation problem has been
attempted till now. One is a discrete formulation in
temporal logic framework [8] which has been extended
to account probabilistic models [8,9]. Second is the
H∞ control framework where time-domain [5,10,11],
frequency domain [4,12] and mixed domain [13] model
validation methods have been studied extensively as-
suming structured norm-bounded uncertainty in linear
dynamics setting. The third framework involves deduc-
tive inference based on barrier certificates [6] which was
shown to encompass a large class of nonlinear models
including differential-algebraic equations [14], dynamic
uncertainties described by integral quadratic constraints
[15], stochastic [16] and hybrid dynamics [17].

In statistical setting, model validation has been ad-
dressed from system identification perspective [18,19]
where the main theme is to validate an identified nomi-
nal model through correlation analysis of the residuals.
A polynomial chaos framework has also been proposed
[20] for model validation. Gevers et. al. [21] have con-
nected the robust control framework with prediction
error based identification for frequency-domain valida-
tion of linear systems. In another vein, using Bayesian
conditioning, Lee and Poolla [22] showed that for para-
metric uncertainty models, the statistical validation
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problem may be reduced to the computation of relative
weighted volumes of convex sets. However, for nonpara-
metric models: “the situation is significantly more com-
plicated” [22] and to the best of our knowledge, has not
been addressed in the literature. Recently, in the spirit
of weak stochastic realization problem [23], Ugrinovskii
[24] investigated the conditions for which the output of
a stochastic nonlinear system can be realized through
perturbation of a nominal stochastic linear system.

In practice, one often encounters the situation where a
model is either proposed from physics-based reasoning
or a reduced order model is derived for computational
convenience. In either case, the model can be linear or
nonlinear, continuous or discrete-time, and in general,
it’s not possible to make any a-priori assumption about
the noise. Given the experimental data and such a can-
didate model for the physical process, our task is to an-
swer: “to what extent, the proposed model is valid?” In
addition to quantify such degree of validation, one must
also be able to demonstrate that the answer is provably
correct in the face of uncertainty. This brings forth the
notion of probabilistically robust model validation. In this
paper, we will show how to construct such a robust vali-
dation certificate, guaranteeing the performance of prob-
abilistic model validation algorithm.

1.2 Contributions of this paper

With respect to the literature, the contributions of this
paper are as follows.

(1) Instead of interval-valued structured uncertainty
(as in H∞ control framework) or moment based
uncertainty (as in parametric statistics frame-
work), this paper deals with model validation in
the sense of nonparametric statistics. Uncertain-
ties in the model are quantified in terms of the
probability density functions (PDFs) of the as-
sociated random variables. We argue that such a
formulation offers several advantages. Firstly, we
show that model uncertainties in the parameters,
initial states and input disturbance, can be propa-
gated accurately by spatio-temporally evolving the
joint state and output PDFs. Since experimental
data usually come in the form of histograms, it’s
a more natural quantification of uncertainty than
specifying sets [6] to which the trajectories are con-
tained at each instant of time. However, if needed,
such sets can be recovered from the supports of
the instantaneous PDFs. Secondly, as we’ll see in
Section 5, instead of simply invalidating a model,
our methodology allows to estimate the probabil-
ity that a proposed model is valid or invalid. This
can help to decide which specific aspects of the
model need further refinement. Hard invalidation
methods don’t cater such constructive information.
Thirdly, the framework can handle both discrete-
time and continuous-time nonlinear models which

need not be polynomial. Previous work like [6]
dealt with semialgebraic nonlinearities and relied
on sum of squares (SOS) decomposition [25] for
computational tractability. From an implementa-
tion point of view, the approach presented in this
paper doesn’t suffer from such conservatism.

(2) Due to the uncertainties in initial conditions, pa-
rameters, and process noise, one needs to compare
output ensembles instead of comparing individual
output realizations. This requires a metric to quan-
tify closeness between the experimental data and
the model in the sense of distribution. We pro-
pose Wasserstein distance to compare the output
PDFs and argue why commonly used information-
theoretic notions like Kullback-Leibler divergence
may not be appropriate for this purpose.

(3) We show that the uncertainty propagation through
continuous or discrete-time dynamics can be done
via numerically efficient meshless algorithms, even
when the model is high-dimensional and strongly
nonlinear. Moreover, we outline how to compute
the Wasserstein distance in such settings. Further,
bringing together ideas from analysis of randomized
algorithms, we give sample-complexity bounds for
robust validation inference.

The paper is organized as follows. In Section 2, we de-
scribe the problem setup. Then we expound on the three
steps of our validation framework, viz. uncertainty prop-
agation, distributional comparison and construction of
validation certificates in Section 3, 4 and 5, respectively.
We provide numerical examples in Section 6, to illustrate
the ideas presented in this paper. The concept of worst-
case initial uncertainty related to model discrimination,
is addressed in Section 7. Section 8 presents some re-
sults for discrete-time linear Gaussian systems, followed
by conclusions in Section 9.

Notation

We use the superscript > to denote matrix transpose,
⊗ to denote Kronecker product, and the symbol ∧ to
denote minimum of two real numbers. The notation
rFs (a1, . . . , ar; b1, . . . , bs;x) stands for generalized hy-
pergeometric function. The symbols N (., .), U (.), and
A (.) are used for normal, uniform and arcsine distribu-
tions, respectively. We use the notation ξ0 (.) to denote
the joint PDF over initial states and parameters. ξ (., t)
and ξ̂ (., t) denote joint PDFs over instantaneous states
and parameters, for the true and model dynamics, re-
spectively. Similarly, η (., t) and η̂ (., t), respectively
denote joint PDFs over output spaces y and ŷ at time
t, for the true and model dynamics. The symbol x̃ is
used to denote the extended state vector obtained by
augmenting the state (x) and parameter (p) vectors.
We use χ to denote indicator function and # to denote
cardinality. Unless stated otherwise, δ (.) stands for
Dirac delta. The symbol I` denotes the `-by-` identity
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Fig. 1. The proposed model validation framework compares experimentally observed output PDF η (y, t) with the model-pre-
dicted output PDF η̂ (ŷ, t), the comparison being made with respect to some suitable metric at each instant of measurement
availability. The state dynamics evolves the initial joint PDF ξ0 (x0) (Fig. 1(a)) to instantaneous joint state PDFs ξ (x, t) and

ξ̂ (x̂, t) (Fig. 1(b)). The associated output PDFs η (y, t) and η̂ (y, t) may share the same support ([0, 1] as shown in Fig. 1(c)),
but have different shapes. Hence, instead of matching output supports, we propose matching output PDFs at all times, for
validating a model.

matrix, ∇x denotes gradient operator with respect to
vector x, vec (·) stands for the vectorization operator,
and ‖ · ‖F denotes the Frobenius norm. tr (·) and det (·)
stand for trace and determinant of a matrix. The ab-
breviations a.s. and i.p. refer to convergence in almost
sure and in probability sense. The shorthand ∂α means
partial derivative with respect to variable α, supp (·)
denotes support of a function, and erf(·) stands for error
function.

2 Problem Setup

2.1 Intuitive idea

The proposed framework is based on the evolution of
densities in output space, instead of evolution of indi-
vidual trajectories, as in the Lyapunov framework. Intu-
itively, characteristics of the input to output mapping is
revealed by the growth or depletion of trajectory concen-
trations in the output-space. Growth in concentration,
or increased density, defines regions in where the trajec-
tories accumulate. This corresponds to regions with slow
time scale dynamics or time invariance. Similarly, deple-
tion of concentration in a set implies fast-scale dynam-
ics or unstable manifold. We refer the readers to [26] for
an introduction to analysis of dynamical systems using
trajectory densities. This idea of comparing dynamical
systems based on density functions, have been presented
before by Sun and Mehta [27] in the context of filtering,
and by Georgiou [28] in the context of matching power
spectral densities.

2.1.1 Proposed approach

Given the experimental measurements of the physical
system in the form of a time-varying distribution (such
as histograms), we propose to compare the shape or con-
centration profile of this measured output density, with

that predicted by the model. At every instant of time,
if the model-predicted density matches with the exper-
imental one “reasonably well” (to be made precise later
in the paper), we conclude that the model is validated
with high confidence (to be computed for guaranteeing
quality of inference).

2.1.2 Why compare densities instead of trajectories

The rationale behind comparing the distributional
shapes for model validation comes from the fact that the
presence of uncertainties mask the difference between
individual output realizations. Uncertainties in initial
conditions, parameters and noise result different realiza-
tions of the trajectory or integral curve of the dynamical
system. Regions of high (low) concentration of trajec-
tories correspond to regions of high (low) probability.
Thus a model validation procedure should naturally aim
to compare concentrations of the trajectories between
the measurements and model-predictions, instead of
comparing individual realizations of them, which would
be meaningful only in the absence of uncertainties.

2.1.3 Why compare densities instead of moments or
sets

Density based model validation provides natural advan-
tages over moment based or set containment methods for
the following reasons. Moment based methods can be er-
roneous for nonlinear non-Gaussian systems, as two dif-
ferent trajectory densities may provide the same corre-
lation information. This can be circumvented by includ-
ing higher order moments, but it is not computationally
tractable for high dimensional systems. Set containment
arguments can also be erroneous as it is possible that at
a given time, two systems have trajectory densities with
identical supports but different concentrations (Fig. 1
(c)).
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Fig. 2. Block diagram for the proposed model validation
formulation.

A proposed model is validated, if the “distance” between
its predicted density and the measured density, remains
below a user-specified tolerance level, which need not be
fixed over time. For example, take-off and landing are
critical operational segments during the flight of a com-
mercial aircraft, and it’s unacceptable to have a con-
troller that does not guarantee the robust performance
for these critical time-segments with very high proba-
bility. This motivates the computation of probability of
validation as part of the model validation oracle.

2.2 Methodology

In this section, we formalize the ideas presented above.
Fig. 1 and 2 show the outline of the model validation
framework proposed here. In this formulation, the sys-
tems under comparison are excited with a known input
signal u (t), and an initial PDF ξ0 (x̃0), supported over
the extended state space x̃ := {x, p}>, where the states
x ∈ Rns , and the parameters p ∈ Rnp . Given the PDF
η (y (t)) supported over the true output space y ∈ Rno ,
and a candidate model, we compute and then compare
the model predicted output PDF η̂ (ŷ (t)), with η (y (t))
at each instances of measurement availability {tj}τj=1.
Thus, one can think of three distinct steps of such a
model validation framework. These are:

(1) evolving ξ0 (x̃0) using the proposed model, to com-
pute η̂ (ŷ (t)),

(2) measuring an appropriate notion of distance, de-
noted as W (t) in Fig. 2, between η (y (t)) and
η̂ (ŷ (t)) at {tj}τj=1,

(3) probabilistic quantification of provably correct in-
ference in this framework and providing sample
complexity bounds for the same.

Now we will elicit each of these steps.

3 Uncertainty Propagation

3.1 Continuous-time models

3.1.1 Uncertainty propagation for deterministic flow

Consider the continuous-time nonlinear model with
state dynamics given by the ODE ˙̂x = f̂ (x̂, p̂), where

x̂ (t) ∈ X̂ ⊆ Rn̂s is the state vector, p̂ ∈ P̂ ⊆ Rn̂p is
the parameter vector, the dynamics f̂ (., p̂) : X̂ 7→ Rn̂s
∀ p̂ ∈ P̂, and is at least locally Lipschitz . It can be put
in an extended state space form

˙̃̂
x = ̂̃

f
(
̂̃x
)
, ̂̃x ∈ X̂ × P̂ ⊆ Rn̂s+n̂p , ̂̃f =




f̂
n̂s×1

0
n̂p×1



 . (1)

The output equation can be written as

ŷ = ĥ
(
̂̃x
)
, ĥ : X̂ × P̂ 7→ Ŷ, (2)

where ŷ (t) ∈ Ŷ ⊆ Rno is the output vector. If uncertain-
ties in the initial conditions (x0 := x (0)) and parame-
ters (p̂) are specified by the initial joint PDF ξ0 (x̃), then
the evolution of uncertainties subject to the dynamics
(1), can be described by evolving the joint PDF ξ̂

(
̂̃x, t
)

over the extended state space. Such spatio-temporal evo-
lution of ξ̂

(
̂̃x, t
)

is governed by the stochastic Liouville
equation (SLE) given by

∂ξ̂

∂t
= LSLEξ̂ = D1ξ̂ = −∇.

(
ξ̂f̂
)

= −
n̂s∑

i=1

∂

∂x̂i

(
ξ̂f̂i

)
,(3)

which is a quasi-linear partial differential equation
(PDE), first order in both space and time. Notice that,
the spatial operator LSLE is a drift operator D1 that
describes the advection of the PDF in extended state
space. The output PDF η̂ (ŷ, t) can be computed from
the state PDF as

η̂ (ŷ, t) =
ν∑

j=1

ξ̂
(
̂̃x?j
)

|det
(
J
(
̂̃x?j
))
|
, (4)

where ̂̃x?j is the jth root of the inverse transformation of
(2) with j = 1, 2, . . . , ν, and J is the Jacobian of this
inverse transformation.

3.1.2 Uncertainty propagation for stochastic flow

Consider the continuous-time nonlinear model with
state dynamics given by the Itô SDE

d̂̃x = ̂̃
f
(
̂̃x
)
dt+ ĝ

(
̂̃x
)
dβ, (5)

where β (t) ∈ Rω is the ω-dimensional Wiener process at
time t, and the noise coupling ĝ : X̂ × P̂ 7→ R(n̂s+n̂p)×ω.
For the Wiener process β (t), at all times

E [dβi] = 0, E [dβidβj ] = Qij = αi δij ∀ i, j = 1, . . . , ω,(6)
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where E [.] stands for the expectation operator and δij is
the Kronecker delta. Thus Q ∈ Rω×ω with αi > 0 ∀ i =
1, 2, . . . , ω, being the noise strength. The output map
is still assumed to be given by (2). In such a setting,
the evolution of the state PDF ξ̂

(
̂̃x, t
)

subject to (5),
is governed by the Fokker-Planck equation (FPE), also
known as forward Kolmogorov equation

∂ξ̂

∂t
= LFPEξ̂ = (D1 +D2) ξ̂

=−
n̂s∑

i=1

∂

∂x̂i

(
ξ̂f̂i

)
+

n̂s∑

i=1

n̂s∑

j=1

∂2

∂x̂i∂x̂j

((
ĝQĝ>

)
ij
ξ̂
)
, (7)

which is a homogeneous parabolic PDE, second order in
space and first order in time. In this case, the spatial
operator LFPE can be written as a sum of a drift operator
(D1) and a diffusion operator (D2). The diffusion term
accounts for the smearing of the PDF due to process
noise. Once the state PDF is computed through (7), the
output PDF can again be obtained from (4).

3.2 Discrete-time models

3.2.1 Uncertainty propagation for deterministic maps

Let X̂×P̂ ⊆ Rn̂s+n̂p be a compact set and letB
(
X̂ × P̂

)

be the Borel-σ algebra defined on it. Consider the
discrete-time nonlinear system with state dynamics
given by the vector recurrence relation

̂̃xk+1 = T̂
(
̂̃xk
)
, T̂ : X̂ × P̂ 7→ X̂ × P̂, (8)

where T̂ is a measurable nonsingular transformation and
the time index k takes values from the ordered index
set of non-negative integers {0, 1, 2, . . .}. Then the evo-
lution of the joint PDF ξ̂

(
̂̃xk
)

is dictated by the Perron-

Frobenius operator P̂, given by
∫

B

P̂ ξ̂
(
̂̃xk
)
µ
(
d̂̃xk

)
=
∫

T̂ −1(B)

ξ̂
(
̂̃xk
)
µ
(
d̂̃xk

)
(9)

for B ∈ B. Properties of Perron-Frobenius operator can
be found in Chap. 3 of [26]. Further, assuming the output
dynamics as ŷk = ĥ

(
̂̃xk
)

, one can derive η̂ (ŷk) from

ξ̂
(
̂̃xk
)

using the discrete analogue of (4).

3.2.2 Uncertainty propagation for stochastic maps

In this case, we consider the nonlinear state space repre-
sentation given by the stochastic maps of general form

̂̃xk+1 = T̂
(
̂̃xk, ζk

)
, ̂̃yk = ĥ

(
̂̃xk, ζk

)
, (10)

where ζk ∈ Rω is the i.i.d. sample drawn from a known
distribution for the noise (stochastic perturbations).
Here, the dynamics T̂ is not required to be a non-
singular transformation (Chap. 10, [26]). Since T̂ defines
a Markov Chain on X̂ × P̂, it can be shown that [26,29]
evolution of the joint PDFs follow

ξ̂k+1 := ξ̂̂̃xk+1

(
̂̃x
)

=
∫

X̂×P̂
KT̂

(
̂̃x|z
)
ξ̂̃xk

(z) dz,

η̂k := η̂
ŷk

(ŷ) =
∫

X̂×P̂
K
ĥ

(ŷ|z) ξ̂̂̃xk
(z) dz, (11)

where KT
(
̂̃x|z
)

and Kh (ŷ|z) are the stochastic kernels

for maps T̂ and ĥ respectively. (11) can be seen as a
special case of the Chapman-Kolmogorov equation [30].

3.3 Computational aspects

For deterministic flow, the Liouville PDE (3) can
be solved in exact arithmetic [31] via method-of-
characteristics (MOC). Since the characteristic curves
for (3) are the trajectories in the extended state space,
ξ̂
(
̂̃x, t
)

and hence η̂ (ŷ, t) can be computed directly
along these characteristics. Unlike Monte-Carlo, this is
an “on-the-fly” computation and does not involve any
approximation, and hence offers a superior performance
[31,32] than Monte-Carlo in high dimensions. For deter-
ministic maps, cell-to-cell mapping [33] achieves a finite
dimensional approximation of the Perron-Frobenius
operator.

For stochastic flow, solving Fokker-Planck PDE (7) is
numerically challenging [34] but has seen some recent
success [35] in moderate (4 to 5) dimensions. For high
dimensional stochastic flows, an extension of the MOC
approach has been proposed [36]. For stochastic maps,
discretizations for stochastic kernels (11) and (12), can
be done through cell-to-cell mapping [33] resulting a ran-
dom transition probability matrix [37].

4 Distributional Comparison

Once the observed and model-predicted output PDFs
η (y, t) and η̂ (ŷ, t), are obtained, we need a metric to
compare the shapes of these two PDFs at times {tj}τj=1,
when the measurement PDF η (y, tj) is available. We ar-
gue that the suitable metric for this purpose is Wasser-
stein distance.

4.1 Choice of metric

Distances on the space of probability distributions [38],
can be broadly categorized into two classes, viz. Csisźar’s
φ-divergence [39] and integral probability metrics [40].
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The first includes well-known distances like Kullback-
Leibler (KL) divergence, Hellinger distance, χ2 diver-
gence etc. while the latter includes Wasserstein distance,
Dudley metric, maximum mean discrepancy. Total vari-
ation distance belongs to both of these classes.

The choice of a suitable metric depends on application.
Following the intuitions of Section 2.1, we list the ax-
iomatic requirements, that a model validation metric
must satisfy:

R.1 The notion of “distance” must measure the shape
difference between two instantaneous output
PDFs. This is because a good model must emulate
similar concentration of trajectories as observed
in the measurement space, i.e. the respective joint
PDFs η (y, t) and η̂ (ŷ, t), over the time-varying
output supports, must match at times whenever
measurements are available. In particular, the dis-
tance must be function of shape difference but not
of shape, i.e. same amount of shape difference must
return same magnitude of distance, irrespective of
the individual shapes being compared.

R.2 For meaningful validation inference, the choice of
distance must be a metric.

R.3 For a given model-data pair, the supports of η (y, t)
and η̂ (ŷ, t) may not match at t = tj , j = 1, . . . , τ .
The distance must be well defined and computable
under such circumstances.

R.4 The computation of the distance need not require
η (y, t) and η̂ (ŷ, t) to be represented by the same
number of samples. For the purpose of model vali-
dation, this offers practical advantages since exper-
imental data are often expensive to gather. How-
ever, model based simulation can harness the com-
putational resources and hence, simulation sample
size is often larger than that of experimental data.

R.5 The distance must be asymptotically consistent
with respect to finite sample representations of the
PDFs under comparison. Namely, in the infinite
sample limit, the empirical estimate of the distance
must converge to the actual instantaneous value of
the distance. For practical computation, this rate-
of-convergence is required to be fast with respect
to the number of samples.

Next, we introduce the Wasserstein distance on the man-
ifold of PDFs, which will be shown to fulfil the axiomatic
requirements listed above.

Definition 1 (Wasserstein distance) Let the `p
norm between two random output vectors y ∈ Y ⊆ Rno ,
and ŷ ∈ Ŷ ⊆ Rno , be denoted as ‖ y − ŷ ‖p. Then, the
Wasserstein distance of order q, between two PDFs η (y)

and η̂ (ŷ), is defined as

pWq (η, η̂) :=

[
inf

ρ∈M2(η,η̂)

∫

Y×Ŷ
‖y − ŷ‖qp ρ (y, ŷ) dydŷ

] 1
q

(12)

whereM2 (η, η̂) is the set of all joint PDFs supported on
Y×Ŷ, having finite second moments, with first marginal
as η and second marginal as η̂.

Remark 1 (Generalizations) In general, the sets Y
and Ŷ can be subsets of any complete, separable metric
(Polish) space, equipped with a pth order distance metric.
Further, (12) does not require the distributions under
comparison to be absolutely continuous. It remains well
defined between output measures µ and µ̂, even when the
corresponding PDFs η and η̂ don’t exist.

Remark 2 (Choice of p = q = 2) We take Euclidean
metric (p = 2) as the inter-sample distance between ran-
dom vectors y and ŷ. Further, we set q = 2 since it guar-
antees uniqueness [41] in (12), and has the interpreta-
tion of minimum effort needed to morph a density shape
to other. Also, Jordan, Kinderlehrer and Otto [42] have
rigorously demonstrated that uncertainty propagation in
a dynamical system can be seen as a gradient flux of free
energy with respect to the Wasserstein distance of order
q = 2.

The interpretation of 2W2 as mass preserving optimal
transport between two given shapes, makes it a strong
candidate for model validation purpose. Further, it is
known [43] that on the set M2, 2W2 defines a metric.
Thus, Wasserstein distance meets R.1 and R.2. Also,
R.3 and R.4 are satisfied since Definition 1 does not
require the supports or cardinality of the sample rep-
resentations of the PDFs to be the same. This will be
illustrated further in Section 4.2, when we describe the
computation of 2W2 between two scattered point clouds
with probability weights. For R.5, convergence of sam-
ple Wasserstein estimate to its true deterministic value,
will be discussed in Section 4.3.1 (Theorem 2).

4.1.1 Limitations of pointwise distances

Commonly used information-theoretic distances like
Kullback-Leibler divergence DKL (η ‖ η̂) , E[log(η/η̂)],
its symmetrized version Dsymm

KL , DKL (η ‖ η̂) +
DKL (η̂ ‖ η), are not metrics. On the other hand,
Hellinger distance H (η, η̂) , 1√

2
‖ √η −

√
η̂ ‖L2(Rno ),

and the square-root of Jensen-Shannon divergence
JSD (η, η̂) , 1

2

[
DKL

(
η ‖ 1

2 (η + η̂)
)

+DKL

(
η̂ ‖ 1

2 (η+
η̂))] are metrics. However, being pointwise definitions,

all of them fail to satisfy R.3 and R.4, resulting com-
putational difficulties for model validation. As for R.5,
DKL (η ‖ η̂) is known to be asymptotically consistent,
but the rate-of-convergence can be arbitrarily slow
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[44,45]. Besides these computational problems, we em-
phasize here that the information theoretic distances
may not discriminate shapes in a geometric sense, as
desired in R.1. We provide two counterexamples be-
low to illustrate this point. The first counterexample
highlights that two PDFs with same randomness need
not have similar shapes. The second counterexample
demonstrates that DKL may depend on the shapes
under comparison.

Counterexample 1 (Randomness 6= shape) Con-
sider the two parametric family of beta densities
ηb (x;α, β) , xα−1(1−x)β−1

B(α,β) , α, β > 0, x ∈ [0, 1], where

B (α, β) ,
∫ 1

0
tα−1 (1− t)β−1

dt = Γ(α)Γ(β)
Γ(α+β) , is the

complete beta function, and Γ (z) denotes the gamma
function. The differential entropy for beta family can be
computed as [46]

Hb (α, β) = −
∫ 1

0

ηb (x;α, β) log ηb (x;α, β) dx

= logB (α, β)− (α− 1) (Ψ (α)−Ψ (α+ β))
− (β − 1) (Ψ (β)−Ψ (α+ β)) , (13)

where Ψ (z) , d
dz log Γ (z), is the digamma function.

Since (13) remains invariant under (α, β) 7→ (β, α),
α 6= β, ηb (x;α, β) and ηb (x;β, α) have same entropy, but
one is skewed to right and the other to left, as shown in
Fig. 3. Fig. 4 shows the isentropic contours of beta PDFs
in (α, β) space. Any pair of distinct points chosen on
these contours, results two beta PDFs with non-identical
shapes, as revealed by Fig. 5 and Appendix A.

Counterexample 2 (DKL 6= shape difference) Con-
sider two ν-dimensional homoscedastic Gaussian PDFs
N (m1,Σ1) and N (m2,Σ2), such that Σ1 = Σ2. Since
the only difference between the two PDFs is the loca-
tion of their means, a shape-discriminating distance is
expected to be a function of ‖ m1 − m2 ‖2, and should
not depend on the covariance matrix i.e. shapes of the
individual PDFs.

In this situation, 2W2 = ‖m1 −m2‖2 [47] and DKL =
1
2

(m2 −m1)>Σ−1
2 (m2 −m1) [48]. If we introducem :=

m2−m1, then
DKL

2W2
=
‖m‖2

2
r, where r :=

m>Σ−1
2 m

m>m
is

the Rayleigh quotient corresponding to the positive semi-
definite precision matrix Σ−1

2 . It’s known (Chap. 7, [49])

that if we denote K := {λ : λ =
ν∑

i=1

αiλi,

ν∑

i=1

αi =

1, αi > 0, ∀i = 1, 2, . . . , ν} as the convex hull of the
eigenvalues of the precision matrix Σ−1

2 , then r (m) ∈ K.

In particular,

rmin = λmin

(
Σ−1

2

)
=

1
λmin (Σ2)

> 0,

rmax = λmax

(
Σ−1

2

)
=

1
λmax (Σ2)

> 0,

and these extrema are attained when m := m2 − m1

respectively coincides with the minimum and maximum
eigenvector of Σ−1

2 . Thus the spectrum of Σ−1
2 governs

the magnitude of the ratio
DKL

2W2
, even when ‖m‖2 is

kept fixed. In particular, the ratio assumes unity iff r =
2
‖m‖2

⇒ Σ−1
2 =

2
‖m‖2

Iν ⇒ Σ1 = Σ2 =
‖m‖2

2
Iν .

Further discussions on the inadequacy of DKL for cap-
turing shape characteristics and the utility of Wasser-
stein distance for the same, can be found in [50,51].

4.1.2 Wasserstein gap between dynamical systems

Proposition 1 (Single output systems)[52] At time
t > 0, let F (y, t) and F̂ (ŷ, t) be the cumulative distri-
bution functions (CDFs) corresponding to the univariate
PDFs η (y, t) and η̂ (ŷ, t), respectively. Then

2W2 (t) =

√∫ 1

0

(
F−1 (ς, t)− F̂−1 (ς, t)

)2

dς, (14)

ρ? (y, ŷ, t) = min
(
F (y, t) , F̂ (ŷ, t)

)
, (15)

where ρ? is the optimizer in (12).

Proposition 2 (Linear Gaussian systems) Con-
sider stable, observable LTI system pairs in continuous
and discrete time:

dxi(t) = Aixi(t)dt+Bidβi(t), yi(t) = Cixi(t), (16)
xi(k + 1) = Aixi(k) +Biϑi(k), yi(k) = Cixi(k), (17)

where i = 1, 2. βi(t) are Wiener processes with auto-
covariances Qi (t1 ∧ t2), t1, t2 > 0, and ϑi (k) are Gaus-
sian white noises with covariances Qi (k). If the initial
PDF ξ0 = N (µ0,Σ0), then the Wasserstein distance be-
tween output PDFs ηi = N (µyi ,Σyi), is given by [47]

2W2 =

√
‖ µy1 − µy2 ‖22 +tr

(
Σy1 + Σy2 − 2

[√
Σy1Σy2

√
Σy1

] 1
2
)
,(18)

where µyi = Ciµxi , Σyi = CiΣxiC
>
i . For the

continuous-time case,

µ̇xi(t) =Aiµxi(t), (19)
Σ̇xi(t) =AiΣxi(t) + Σxi(t)A

>
i +BiQiB

>
i , (20)
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same entropy/randomness, but have
different shapes.

Fig. 4. Isentropic contours of beta fam-
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plies Hb(α, β) = Hb(β, α). This plot
also shows that uniform distribution
(α = β = 1) is of maximum entropy.
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Fig. 5. Iso-Wasserstein contours of
2W2 (ηb (x;α, β) , ηb (x;β, α)) in (α, β)
space. Since 2W2 is a metric, it has sym-
metry about α = β line, and vanishes
only along this line. The computation of
2W2 is detailed in Appendix A.

and for the discrete-time case,

µxi (k + 1) =Aiµxi (k) , (21)
Σxi (k + 1) =AiΣxi (k)A>i +BiQiB

>
i , (22)

to be solved with µxi (0) = µ0, and Σxi (0) = Σ0. Deter-
ministic results are recovered from above by setting the
diffusion matrix Bi = 0.

Remark 3 (Asymptotic Wasserstein distance) In
Table 1, we have listed asymptotic Wasserstein distances
between different pairs of stable dynamical systems. The
asymptotic 2W2 between two deterministic linear systems
(first row) is zero since the origin being unique equilibria
for both systems, Dirac delta is the stationary density for
both. For a pair of deterministic affine systems (second
row), asymptotic 2W2 is simply the `2 norm between their
respective fixed points. This holds true even for a pair of
nonlinear systems, each having a unique globally asymp-
totically stable equilibrium. For the stochastic linear case
(third row), Σy∞ = CΣx∞C>, and Σ̂

ŷ∞ = ĈΣ̂
x̂∞Ĉ

>;

where Σx∞, Σ̂x̂∞ respectively solve AΣx∞ + Σx∞A> +
BQB> = 0, and ÂΣ̂

x̂∞+ Σ̂
x̂∞Â

>+ B̂Q̂B̂> = 0. Q and
Q̂ are process noise covariances associated with Wiener
processes β (t) and β̂ (t). For the fourth and fifth row,
the set of stable equilibria for the true and model non-
linear system, are given by {y?i }n

?

i=1 and {ŷ?i }n̂
?

i=1, respec-
tively. Further, we assume that the nonlinear systems
have no invariant sets other than these stable equilibria.
In such cases, the stationary densities are convex sum
of Dirac delta densities, located at these equilibria. The
weights for this convex sum, denoted as m?

i and m̂?
i , de-

pend on the initial PDF ξ0. In particular, if we denote
Ri as the region-of-attraction of the ith equilibrium,
then (see Appendix B)

m?
i =

∫

supp(ξ0)∩Ri
ξ0 (x0) dx0 ∈ [0, 1] . (23)

To further illustrate this idea, a numerical example cor-
responding to the fourth row in Table 1, will be provided
in Section 6.

4.2 Computing multivariate 2W2

Computing Wasserstein distance from (12) calls for solv-
ing Monge-Kantorovich optimal transportation plan [53].
In this formulation, the difference in shape between two
statistical distributions is quantified by the minimum
amount of work required to convert a shape to the other.
The ensuing optimization, often known as Hitchcock-
Koopmans problem [54–56], can be cast as a linear pro-
gram (LP), as described next.

Consider a complete, weighted, directed bipartite graph
Km,n (U ∪ V,E) with # (U) = m and # (V ) = n. If
ui ∈ U, i = 1, . . . ,m, and vj ∈ V, j = 1, . . . , n, then
the edge weight cij :=‖ ui − vj ‖2`2 denotes the cost
of transporting unit mass from vertex ui to vj . Then,
according to (12), computing 2W

2
2 translates to

minimize
m∑

i=1

n∑

j=1

cij ϕij (24)

subject to the constraints

n∑

j=1

ϕij = αi, ∀ ui ∈ U, (C1)

m∑

i=1

ϕij = βj , ∀ vj ∈ V, (C2)

ϕij > 0, ∀ (ui, vj) ∈ U ×V. (C3)
The objective of the LP is to come up with an opti-
mal mass transportation policy ϕij := ϕ (ui → vj) asso-
ciated with cost cij . Clearly, in addition to constraints
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Table 1
For various stable dynamical system pairs, we list asymptotic Wasserstein distance, defined as 2W2 (η∞, η̂∞), where η∞ and
η̂∞ are the stationary PDFs of the true and model dynamics, respectively.

Systems Dynamics Stationary PDFs Asymptotic 2W2

Deterministic linear pair ẋ(t) = Ax(t), y(t) = Cx(t), η∞ = δ (y) 0

˙̂x(t) = Âx̂(t), ŷ(t) = Ĉx̂(t) η̂∞ = δ (ŷ)

Deterministic affine pair ẋ(t) = Ax(t) + b, y(t) = Cx(t) + d, η∞ = δ
(
y + CA−1b− d

) ∥∥∥∥
(
d− d̂

)
−
(
CA−1b− ĈÂ−1b̂

)∥∥∥∥
2

˙̂x(t) = Âx̂(t) + b̂, ŷ(t) = Ĉx̂(t) + d̂ η̂∞ = δ
(
ŷ + ĈÂ−1b̂− d̂

)

Stochastic linear pair dx(t) = Ax(t)dt+Bdβ(t), y(t) = Cx(t), η∞ = N (0,Σy∞)

(
tr

(
Σy∞ + Σ̂ŷ∞ − 2

[
Σ

1
2
y∞Σ̂ŷ∞Σ

1
2
y∞

] 1
2
)) 1

2

dx̂(t) = Âx̂(t)dt+ B̂dβ̂(t), ŷ(t) = Ĉx̂(t) η̂∞ = N
(

0, Σ̂ŷ∞

)

Deterministic nonlinear ẋ(t) = f (x(t)) , y(t) = h (x(t)), η∞ =

n?∑

i=1

m?i δ (y − y?i )



n?∑

i=1

∥∥y?i
∥∥2

2
m?i δ (y − y?i )




1
2

and deterministic linear ˙̂x(t) = Âx̂(t), ŷ(t) = Ĉx̂(t) η̂∞ = δ (ŷ)

Deterministic nonlinear pair ẋ(t) = f (x(t)) , y(t) = h (x(t)), η∞ =

n?∑

i=1

m?i δ (y − y?i ) Monge-Kantorovich optimal

˙̂x(t) = f̂ (x̂(t)) , ŷ(t) = ĥ (x̂(t)) η̂∞ =
n̂?∑

i=1

m̂?i δ (ŷ − ŷ?i ) transport LP (24), (C1)–(C3)

(C1)–(C3), (24) must respect the necessary feasibility
condition

m∑

i=1

αi =
n∑

j=1

βj (C0)

denoting the conservation of mass. In our context of mea-
suring the shape difference between two PDFs, we treat
the joint probability mass function (PMF) vectors αi
and βj to be the marginals of some unknown joint PMF
ϕij supported over the product space U × V . Since de-
termining joint PMF with given marginals is not unique,
(24) strives to find that particular joint PMF which mini-
mizes the total cost for transporting the probability mass
while respecting the normality condition.

4.3 Computational complexity for 2W2

4.3.1 Sample complexity

For a desired accuracy of Wasserstein distance computa-
tion, we want to specify the bounds for number of sam-
ples m = n, for a given initial PDF. Since the finite sam-
ple estimate of Wasserstein distance is a random vari-
able, we need to answer how large should n be, in order
to guarantee that the empirical estimate of Wasserstein
distance obtained by solving the LP (24), (C1)–(C3)
with m = n, is close to the true deterministic value of
(12) in probability. In other words, given ε, δ ∈ (0, 1), we
want to estimate a lower bound of m = n as a function
of ε and δ, such that

P
(∣∣

2W2

(
ηjm (y) , η̂jn (ŷ)

)
− 2W2

(
ηj (y) , η̂j (ŷ)

)∣∣ < ε
)

> 1− δ, ∀j = 1, 2, . . . , τ.

Similar consistency and sample complexity results are
available in the literature (see Corollary 9(i) and Corol-
lary 12(i) in [57]) for Wasserstein distance of order q = 1.
From Hölder’s inequality, Wq2 > Wq1 for q2 > q1, and
hence that sample complexity bound, in general, does
not hold for q = 2.To proceed, we need the following
results.

Lemma 1 (Appendix C) If X, Y , Z are non-negative
random variables such that Y and Z are independent,
and X 6 Y + Z, then for ε > 0, we have

P (X > ε) 6 P (Y + Z > ε) 6 P
(
Y >

ε

2

)
+ P

(
Z >

ε

2

)
.

Definition 2 (Transportation cost inequality)[58]
A probability measure µ is said to satisfy the Lp-
transportation cost inequality (TCI) of order q, if
there exists some constant C > 0 such that for any
probability measure ν, pWq (µ, ν) 6

√
2CDKL (ν ‖ µ).

In short, we write µ ∈ Tq (C). In particular, for
µ ∼ N (mκ×1,Σκ×κ), we have [59] µ ∈ T2 (λmax (Σ)).

Theorem 1 (Rate-of-convergence of empirical
measure in Wasserstein metric)(Thm. 5.3, [60])
For a probability measure ρ ∈ Tq (C ), 1 6 q 6 2, and its
n-sample estimate ρn, we have

P (pWq (ρ, ρn) > θ) 6 Kθ exp
(
−nθ

2

8C

)
, θ > 0, (25)

and logKθ :=
1
C

inf
µ

# (supp µ) (diam (supp µ))2. The
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optimization takes place over all probability measures µ
of finite support, such that pWq (ρ, µ) 6 θ/4.

We now make few notational simplifications. In this sub-
section, we denote ηj (y) and η̂j (y) by η and η̂, and their
finite sample representations by ηm and η̂n, respectively.
Then we have the following result.

Theorem 2 (Rate-of-convergence of empirical
Wasserstein estimate) (Appendix D) For true den-
sities η and η̂, let corresponding empirical densities be
ηm and η̂n, evaluated at respective uniform sampling of
cardinality m and n. Let C1, C2, be the TCI constants
for η and η̂, respectively and fix ε > 0. Then

P
(∣∣∣∣ 2W2 (ηm, η̂n) − 2W2 (η, η̂)

∣∣∣∣ > ε

)

6 K1 exp
(
− mε2

32C1

)
+K2 exp

(
− nε2

32C2

)
. (26)

Remark 4 At a fixed time, K1, K2, C1 and C2 are con-
stants in a given model validation problem, i.e. for a given
pair of experimental data and proposed model. However,
values of these constants depend on true and model dy-
namics. In particular, the TCI constants C1 and C2 de-
pend on the dynamics via respective PDF evolution oper-
ators. The constantsK1 andK2 depend on η and η̂, which
in turn depend on the dynamics. For pedagogical purpose,
we next illustrate the simplifying case K1 = K2 = K,
C1 = C2 = C .

Corollary 1 (Sample complexity for empiri-
cal Wasserstein estimate) For desired accuracy
ε ∈ (0, 1), and confidence 1 − δ, δ ∈ (0, 1), the sample
complexity m = n = Nwass, for finite sample Wasser-
stein computation is given by

Nwass =
(

32C

ε2

)
log
(

2K
δ

)
. (27)

4.3.2 Runtime complexity

The LP formulation (24), (C1)–(C3), requires solving
for mn unknowns subject to (m+ n+mn) constraints.
For m = n, it can be shown that [61,62] the runtime
complexity for solving the LP isO

(
no n

2.5 log ν
)
. Notice

that the output dimension no enters only through the
cost cij in (24) and hence affects the computational time
linearly.

In actual simulations, we found the runtime of the LP
(24) to be sensitive on how the constraints were imple-
mented. Suppose, we put (24) in standard form

minimize c̃>ϕ̃, subject to Aϕ̃ = b, ϕ̃ > 0, (28)

where c̃mn×1 := vec (c), ϕ̃mn×1 := vec (ϕ), b(m+n)×1 :=
[αm×1, βn×1]>. If we let en := [1, 1, . . . , 1︸ ︷︷ ︸

n times

]>, then the

implementation A(m+n)×mn =

[
e>n ⊗ Im
In ⊗ e>m

]
was found to

achieve fast offline construction of the constraint matrix.

4.3.3 Storage complexity

For m = n, the constraint matrix A in (28), is a binary
matrix of size 2n×n2, whose each row has n ones. Conse-
quently, there are total 2n2 ones in the constraint matrix
and the remaining 2n2 (n− 1) elements are zero. Hence
at any fixed time, the sparse representation of the con-
straint matrix needs # non-zero elements×3 = 6n2 stor-
age. The PMF vectors are, in general, fully populated.
In addition, we need to store the model and true sam-
ple coordinates, each of them being a no-tuple. Hence at
any fixed time, constructing cost matrix requires storing
2non values. Thus total storage complexity at any given
snapshot, is 2n (3n+ no + 1) = O

(
n2
)
, assuming n >

no. However, if the sparsity of constraint matrix is not
exploited by the solver, then storage complexity rises to
2n
(
n2 + no + 1

)
= O

(
n3
)
. For example, if we take n =

1000 samples and use double precision arithmetic, then
solving the LP at each time requires either megabytes or
gigabytes of storage, depending on whether or not sparse
representation is utilized by the solver 1 . For m 6= n, it
is easy to verify that the sparse storage complexity is
(6mn+ (m+ n)no +m+ n), and the non-sparse stor-
age complexity is (m+ n) (mn+ n0 + 1).

5 Construction of Validation Certificates

5.1 Probabilistically robust model validation

Often in practice, the exact initial density is not known
to facilitate our model validation framework; instead a
class of densities may be known. For example, it may
be known that the initial density is symmetric unimodal
but its exact shape (e.g. normal, semi-circular etc.) may
not be known. Even when the distribution-type is known
(e.g. normal), it is often difficult to pinpoint the pa-
rameter values describing the initial density function.
To account such scenarios, consider a random variable
∆ : Ω → E, that induces a probability triplet (Ω,F ,P)
on the space of initial densities. HereE ⊂ Ω and # (E) =
1. The random variable ∆ picks up an initial density
from the collection of admissible initial densities Ω :=
{ξ(1)

0 (x̃) , ξ(2)
0 (x̃) , . . .} according to the law of ∆. For ex-

ample, if we know ξ0 ∼ N
(
µ0, σ

2
0

)
with a given joint

distribution over the
(
µ0, σ

2
0

)
space, then in our model

1 We used MOSEK (available at www.mosek.com) as the LP
solver.

10



Algorithm 1 Construct PRVC
Require: ε, δ ∈ (0, 1), T , ν, law of ∆, experimental data
{ηk (y)}τk=1, model, tolerance vector {γk}τk=1

1: N ← Nch (ε, δ) . Using lemma 2

2: Draw random functions ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . . , ξ

(N)
0 (x̃)

according to the law of ∆
3: for k = 1 to τ do . Index for time step
4: for i = 1 to N do . Index for initial density

5: for j = 1 to ν do . Samples drawn from ξ
(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for

9: Propagate ξ̂
(i)
k

(
̂̃x
)

. Use (3), (7), (9) or (11)

10: Compute η̂
(i)
k (ŷ)

11: Compute 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
. Distributional

comparison by solving LP (24) subject to (C0)–(C3)
12: sum ← 0 . Initialize

13: if 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
6 γk then

14: sum ← sum + 1
15: end if
16: end for
17: p̂N (γk)← sum

N
. Construct PRVC vector

18: end for

validation framework, one sample from this space will
return one distance measure between the instantaneous
output PDFs. How many such

(
µ0, σ

2
0

)
samples are nec-

essary to guarantee the robustness of the model valida-
tion oracle? The Chernoff bound provides such an esti-
mate for finite sample complexity.

At time step tk, let the validation probability be
p (γk) := P (2W2 (ηk (y) , η̂k (ŷ)) 6 γk). Here γk ∈ R+

is the prescribed instantaneous tolerance level. If the
model validation is performed by drawing N sam-
ples from Ω, then the empirical validation probability

is p̂N (γk) :=
1
N

N∑

i=1

χ
V

(i)
k

where V
(i)
k := {η̂(i)

k (ŷ) :

2W2

(
η

(i)
k (y) , η̂(i)

k (ŷ)
)
6 γk}. Consider ε, δ ∈ (0, 1) as

the desired accuracy and confidence, respectively.

Lemma 2 (Chernoff bound)[63] For any ε, δ ∈ (0, 1),

ifN > Nch :=
1

2ε2
log

2
δ

, then P (|p (γk)− p̂N (γk) |< ε) >
1− δ.

The above lemma allows us to construct probabilistically
robust validation certificate (PRVC) p̂N (γk) through the
algorithm below. The PRVC vector, with ε accuracy,
returns the probability that the model is valid at time
tk, in the sense that the instantaneous output PDFs are
no distant than the required tolerance level γk. Lemma
2 lets the user control the accuracy ε and the confidence
δ, with which the preceding statement can be made.
Thus the framework enables us to compute a provably
correct validation certificate on the face of uncertainty
with finite sample complexity.

Algorithm 2 Construct PWVC
Require: ε, δ ∈ (0, 1), τ , ν, law of ∆, experimental data
{ηk (y)}τk=1, model

1: N ← Nwc (ε, δ) . Using lemma 3

2: Draw N random functions ξ
(1)
0 (x̃) , ξ

(2)
0 (x̃) , . . . , ξ

(N)
0 (x̃)

according to the law of ∆ . Use MCMC
3: for k = 1 to τ do . Index for time step
4: for i = 1 to N do . Index for initial density
5: for j = 1 to ν do . Index for samples in the

extended state space, drawn from ξ
(i)
0 (x̃)

6: Propagate states using dynamics
7: Propagate measurements
8: end for

9: Propagate ξ̂
(i)
k

(
̂̃x
)

. Use (3), (7), (9) or (11)

10: Compute η̂
(i)
k (ŷ) . Algebraic transformation

11: Compute 2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
.

Distributional comparison by solving LP

12: γ̂Nk ← max
i=1,...,N

2W2

(
η

(i)
k (y) , η̂

(i)
k (ŷ)

)
.

Empirically estimate worst-case performance
13: end for
14: end for

5.2 Probabilistically worst-case model validation

Following [64–66], one can also define a probabilistic no-
tion of the worst-case model validation performance as
γwc
k := sup

∆
2W2 (ηk (y) , η̂k (ŷ)), and its empirical esti-

mate γ̂Nk := max
i=1,...,N

2W2

(
η

(i)
k (y) , η̂(i)

k (ŷ)
)

. The sample

complexity for probabilistically worst-case model vali-
dation is given by the lemma below.

Lemma 3 (Worst-case bound) (p. 128, [63]) For

any ε, δ ∈ (0, 1), if N > Nwc :=
log

1
δ

log
1

1− ε

, then

P
(
P
(

2W2 (ηk (y) , η̂k (ŷ)) 6 γ̂Nk
)
> 1− ε

)
> 1− δ.

Notice that in general, there is no guarantee that the
empirical estimate γ̂Nk is close to the true worst-case
performance γwc

k . Also, the performance bound is ob-
tained a posteriori while the robust validation frame-
work accounted for a priori tolerance levels. The cor-
responding probabilistically worst-case validation certifi-
cate (PWVC) γ̂Nk can be computed from the following
algorithm. In summary, the algorithm, with high prob-
ability (1− ε), only ensures that the output PDFs are
at most γ̂Nk far. The preceding statement can be made
with probability at least 1− δ.

6 Illustrative Examples

Example 1 Continuous-time deterministic dynamics

11



Consider the following nonlinear dynamical system

ẍ = −ax− b sin 2x− cẋ, a = 0.1, b = 0.5, c = 1. (29)

The system has five fixed points P0 = (0, 0), P±1 =
(±1.7495, 0), P±2 = (±2.8396, 0), which can be solved by
noting the abscissa values of the points of intersection of
two curves f (x) = b sin 2x and g (x) = −ax, as shown
in Fig 6. From linear analysis, it is easy to verify that
P0 and P±2 are stable foci while P±1 are saddles (Fig. 7).
To illustrate our model validation framework, let’s as-

-10 -5 5 10

-1.0

-0.5

0.5

1.0

Fig. 6. Points of intersection of the curve f (x) = b sin 2x and
the line g (x) = −ax.

Fig. 7. Phase portrait of the vector field (29) with three
stable and two saddle fixed points.

sume that ‘true data’ is generated by the dynamics (29).
However, this true dynamics is unknown to the modeler,
whose proposed model is a linearization of (29) about
the origin. We emphasize here that the purpose of (29)
is only to create the synthetic data and to demonstrate
the proof-of-concept. In a realistic model validation, the
data arrives from experimental measurements, not from
another model. For simplicity, we take the outputs same
as states for both true and model dynamics.

Starting from the bivariate uniform distribution
U ([−π, π]× [−π, π]) =: ξ0, we evolve the respective
joint PDFs ξ = η and ξ̂ = η̂, through true and model

dynamics via MOC implementation of Liouville equa-
tion [31]. The distributional shape discrepancy is cap-
tured via the Wasserstein gap (2W2 (η, η̂)) between
these instantaneous joint PDFs, as shown in Fig. 8
(solid line), computed by solving the LP (24), (C1)–
(C3). As the individual joint PDFs converge toward
their respective stationary densities, the slope of the
Wasserstein time-history decreases progressively. Fig.
9 shows the Wasserstein gap trajectories when ξ0 is
taken to be N

(
0, σ2

0I2
)
, instead of uniform. In this

case, we observe that larger initial dispersion causes
larger Wasserstein gap. Suppose the user-specified tol-
erance level {γj}40

j=1 is 0.8 for first 10 instances and
0.6 for next 30 instances of measurement availabil-
ity, as shown by the shaded area in Fig. 9. Given the
set of admissible initial densities {ξ(1)

0 , . . . , ξ
(9)
0 } with

ξ
(i)
0 := N

(
0, σ2

0iI2
)
, i = 1, . . . , 9, we can compute the

PRVC vector, shown as the dashed line in Fig. 9, to be
1, . . . , 1,︸ ︷︷ ︸

3 times

0.89, 0.78, . . . , 0.78,︸ ︷︷ ︸
5 times

0.67, 0.56, . . . , 0.56︸ ︷︷ ︸
30 times



>

.

Example 2 Continuous-time stochastic dynamics

Here we assume the true data to be generated by
(29) with additive white noise having autocorrelation
Qδ (t1 − t2), t1, t2 > 0. Letting x1 = x and x2 = ẋ, the
associated Itô SDE can be written in state-space form
similar to (5)

{
dx1

dx2

}
=

{
x2

−ax1 − b sin 2x1 − cx2

}
dt+

{
0

1

}
dβ,(30)

where β (t) is a Wiener process with autocorrelation
Q (t1 ∧ t2). The stationary Fokker-Planck equation for
(30) can be solved in closed form (Appendix E)

η∞ (x1, x2) ∝ exp
(
− c

2Q
(
ax2

1 + x2
2 − b cos 2x1

))
, (31)

and one can verify that peaks of (31) appear at the fixed
points of the nonlinear drift.

Let the proposed model be the linearization of (30) about
the origin. It is well-known [68] that the stationary den-
sity of a linear SDE of the form dx̂ = Ax̂ dt + B dβ, is
given by

η̂∞ (x̂) = N (0,Σ∞) =
exp

(
− 1

2 x̂>Σ−1
∞ x̂

)
√

(2π)2 det (Σ∞)
, (32)

provided A is Hurwitz and (A,B) is a controllable pair.
The steady-state covariance matrix Σ∞ solves AΣ∞ +
Σ∞A> +BQB> = 0. For the linearized version of (30),

12



Fig. 8. Starting with ξ0 = U ([−π, π]× [−π, π]), the solid line
shows time history of 2W2 measured between the joint state
PDFs for (29) and its linearization about the origin. The dashed
line shows the same between (30) and its linearization about
the origin. The dash-dotted line shows the stationary 2W2 be-
tween known η∞ and η̂∞ (contours in the inset plot), given by
(31) and (32) respectively, and is computed by solving the op-
timal transport LP between their MCMC samples (scattered
points in the inset plot). All computations were done with 1000
Halton samples [67] from ξ0 and 50 eigenfunctions in noise KL
expansion.

Fig. 9. Starting with ξ0 = N
(
0, σ2

0I2
)
, transient Wasserstein

time histories, measured between the joint state PDFs for (29)
and its linearization about the origin. In this case, increasing σ0

increases 2W2 at all times. Further, notice that 2W2 trajectories
with larger σ0, converges to higher asymptotic values. This is
due to the fact that the stationary density of (29) is of the

form η∞(y) =
∑5
i=1 m

?
i δ (y − y?i ), and hence depends on ξ0, as

explained in Remark 3 and fourth row of Table 1. The shaded
area shows user-specified tolerance level {γj}40

j=1, from which
PRVC (dashed line) can be computed. In this case, PWVC is
simply the 2W2 trajectory corresponding to σ0 = 1.4.

A =

[
0 1

(−a− 2b) −c

]
and B =

{
0

1

}
satisfy the afore-

mentioned conditions and the stationary density is ob-
tained from (32).

Taking the initial density same as in Example 3.1, we
propagated the joint PDFs for (30) and the linear SDE
using the KLPF method described in [36]. The dashed
line in Fig. 8 shows the Wasserstein trajectory for this
case. The dash-dotted line in Fig. 8 shows the asymp-
totic Wasserstein gap between the respective stationary
densities (31) and (32). Due to randomized sampling, all
stochastic computations are in probabilistically approx-
imate sense [69].

Example 3 Discrete-time deterministic dynamics

Let the true data be generated by the Chebyshev map
[70] T : [−1, 1] 7→ [−1, 1], given by

xk+1 = T (xk) = cos
(
2 cos−1 xk

)
. (33)

If we let ξk := ξ (xk), then the PF operator P : ξk 7→
ξk+1, for (33) can be computed [71] as

Pξk =
1

2
√

2xk + 2

[
ξ

(√
xk + 1

2

)
+ ξ

(
−
√
xk + 1

2

)]
,(34)

with stationary PDF ξ∞ (x) =
1

π
√

1− x2
, and CDF

F∞ (x) =
2
π

sin−1

(√
x+ 1

2

)
. Notice that for small xk,

(33) behaves like a quadratic transformation. Suppose
the following logistic map T̂ : [0, 1] 7→ [0, 1], is proposed
to model the data generated by (33):

xk+1 = T̂ (x̂k) = 4x̂k (1− x̂k) . (35)

The PF operator P̂ : ξ̂k 7→ ξ̂k+1, for (35) is given by [26]

P̂ ξ̂k =
1

4
√

1− x̂k

[
ξ̂

(
1 +
√

1− x̂k
2

)
+ ξ̂

(
1−
√

1− x̂k
2

)]
,(36)

with stationary PDF ξ̂∞ (x̂) =
1

π
√
x̂ (1− x̂)

, and CDF

F̂∞ (x̂) =
2
π

sin−1
(√

x̂
)

. Taking the outputs identical
to states, the asymptotic Wasserstein distance between

13



ξ0ξ∞
ξ0

ξ1

ξ2 ξ̂1

ξ̂2

ξ̂∞
2W2

t
(a) (b) (c)

Fig. 10. Starting with ξ0 (x) = 3
4

(
1− x2

)
, evolution of PDFs for (a) true PF operator (34), and (b) model PF operator (36).

(c) Wasserstein time histories between PF operators (34) and (36) for various initial PDFs.

(33) and (35), becomes

2W2

(
ξ∞ (x) , ξ̂∞ (x̂)

)
=

√∫ 1

0

(
F−1
∞ (ς)− F̂−1

∞ (ς)
)2

dς

=

√∫ 1

0

(
2 sin2

(πς
2

)
− 1− sin2

(πς
2

))2

dς

=

√∫ 1

0

(
1
2

+
cos (πς)

2

)2

dς ≈ 0.6124. (37)

Given an initial density ξ0, the transient PDFs ξ (x, t)
and ξ̂ (x, t) can be computed from (34) and (36) (Fig.
10(a) and (b)). Fig. 10(c) shows the transient Wasser-
stein time-histories 2W2

(
ξ (x, t) , ξ̂ (x, t)

)
for various

initial PDFs, which converge to its asymptotic value
obtained analytically in (37).

Example 4 Discrete-time stochastic dynamics

Consider the true data being generated from the logistic
map with multiplicative stochastic perturbation:

xk+1 = T (xk, ζk) = ζkS (xk) = ζkxk (1− xk) , (38)

where S : [0, 1] 7→ [0, 1], and {ζk}∞0 are i.i.d random
variables on [0, 4], drawn from noise density φ(.). This
map has found applications in population dynamics and
size-dependent branching processes [72,73]. The PF op-
erator for (38) is given by (p. 330-331, [26])

Pξk =
∫ ∞

0

ξ (y)Kmul (xk, y) dy, (39)

with the multiplicative stochastic kernel Kmul (xk, y) :=
1
S (y)

φ

(
xk
S (y)

)
. In particular, ζk ∼ N (0, 1) results

Pξk =
∫ ∞

0

ξ (y)
1√

2π y (1− y)
e
− 1

2
x2

y2(1−y)2 dy. The

asymptotic behavior of (38) is known [72] to depend on
the noise density φ (.). Specifically, E [log ζ0] < 0,= 0,

and > 0 implies xk
a.s.−−→ 0, xk

i.p.−−→ 0, and existence of

stationary density ξ∞ on (0, 1) ∀x0 6= 0, respectively. For

example, if ζk ∼ N (0, 1), then
∫ 4

0

log ζ
1√
2π
e−

ζ2

2 dζ =

erf
(

2
√

2
)

log (2) − 2

√
2
π

2F2

(
1
2
,

1
2

;
3
2
,

3
2

;−8
)

≈

−0.32 < 0, and hence xk
a.s.−−→ 0.

Let the proposed model be

x̂k+1 = T̂
(
x̂k, ζ̂k

)
= Ŝ (xk) + ζ̂k = x̂k + ζ̂k, (40)

where Ŝ : R 7→ R, and ζ̂k ∼ N (0, 1). The PF operator
for a map with additive noise is of the form

P̂ ξ̂k =
∫ ∞

−∞
ξ̂ (y)Kadd (x̂k, y) dy, (41)

with the additive stochastic kernel Kadd (x̂k, y) :=
φ
(
x̂k − Ŝ (y)

)
. Consequently, the PF operator for (40)

is P̂ ξ̂k =
∫ ∞

−∞

1√
2π

exp

(
− (x̂k − y)2

2

)
ξ̂ (y) dy. It can

be verified (p. 325, [26]) that the successive iterate P̂k ξ̂
converges uniformly to zero as k →∞, and hence there
is no non-trivial stationary density. Given an initial
density, the Wasserstein distance can be computed be-
tween (39) and (41). This example demonstrates that
(in)validating a stochastic map has sensitive depen-
dence on noise density.

Example 5 Comparison with barrier certificate based
model falsification

Consider the nonlinear model validation problem stated
as Example 4 in [6], where the model is ẋ = −px3, with
parameter p ∈ P = [0.5, 2]. The measurement data are
interval-valued sets X0 = [0.85, 0.95] at t = 0, and XT =
[0.55, 0.65] at t = T = 4. A barrier certificate of the
formB (x, t) = B1 (x)+tB2 (x) was found in [6] through
sum-of-squares (SOS) optimization [74] where B1 (x) =
8.35x+10.40x2−21.50x3+9.86x4, andB2 (x) = −1.78+
6.58x−4.12x2−1.19x3 +1.54x4. The model was thereby
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Fig. 11. This plot illustrates how Prajna’s barrier certifi-
cate-based invalidation result can be recovered in our proba-

bilistic model validation framework. To show X̃T is not reach-
able from the set X̃0 in time T = 4, we sample X̃0 uniformly
and propagate that uniform ensemble subject to the pro-
posed model dynamics till T = 4. The samples are gray-scale
color coded (white = high probability, black = low probabil-
ity) according to the value of the joint PDF at that location.
Here, the model is invalidated since the pair of joint PDFs
at initial and final time, does not satisfy the Liouville trans-
port PDE corresponding to the model dynamics, as proved
in Theorem 3.

invalidated by the existence of such certificate, i.e. the
model ẋ = −px3, with parameter p ∈ P was shown to
be inconsistent with measurements {X0,XT , T}.

To tackle this problem in our model validation frame-
work, consider the spatio-temporal evolution of the joint
PDF ξ (x, p, t) over the extended state space x̃ = [x p]>,
with initial support X̃0 := X0 × P, under the action of
the extended vector field f̃ (x, p) =

[
−px3 0

]>. Our
objective then, is to prove that for T = 4, the PDF
ξT (xT , p, T ) = U (xT , p) = 1/vol

(
X̃T
)

is not finite-time

reachable from ξ0 (x0, p) = U (x0, p) = 1/vol
(
X̃0

)
, sub-

ject to the proposed model dynamics on the extended
state space.

Theorem 3 The two-point boundary value problem

∂ξ

∂t
+∇

x̃
·
(
f̃ (x, p) ξ

)
=
∂ξ

∂t
+∇x ·

(
−px3ξ

)
= 0,

ξ (x(0), p, 0) = ξ0 (x0, p) = U (x0, p) = 1/vol
(
X̃0

)
,

ξ (x(T ), p, T ) = ξT (xT , p, T ) = U (xT , p) = 1/vol
(
X̃T
)
,

has no solution for ξ (x, p, t), such that
∫

X̃ (t)

ξ (x, p, t) dxdp =

1, ∀t ∈ (0, T ).

Proof. MOC ODE [31] corresponding to the Liouville
PDE ∂ξ

∂t +∇
x̃
·
(
f̃ (x, p) ξ

)
= 0, yields a solution of the

form

ξ (x, p, t) = ξ0 (x0, p) exp
(
−
∫ t

0

∇
x̃
·
(
f̃ (x (τ) , p)

)
dτ

)
.(42)

For the model dynamics ẋ = −px3, we have ∇
x̃
·(

f̃ (x (τ) , p)
)

= −3p (x (τ))2 and
1
x2

=
1
x2

0

+ 2pt. Con-

sequently (42) results

ξ (x, p, t) = ξ0 (x0, p)
(
1 + 2x2

0pt
)3/2

=
1

(1− 2x2pt)3/2
ξ0

(
± x√

1− 2x2pt
, p

)
. (43)

In particular, for ξ0 (x0, p) = 1/vol
(
X̃0

)
, ξT (xT , p, T ) =

1/vol
(
X̃T
)

, and T = 4, (43) requires us to satisfy

(
1− 8x2

T p
)

=




vol
(
X̃T

)

vol
(
X̃0

)




2/3

> 0⇒ 1 > 8x2
T p. (44)

Since 8x2
T p is an increasing function in both xT ∈ XT

and p ∈ P, we need at least 1 > 8 (xT )2
min pmin =

8 × (0.55)2 × 0.5 = 1.21, which is incorrect. Thus the
PDF ξT (xT , p, T ) ∼ U (xT , p) is not finite-time reach-
able from ξ0 (x0, p) ∼ U (x0, p) for T = 4, via the pro-
posed model dynamics. Hence our measure-theoretic for-
mulation recovers Prajna’s invalidation result [6] as a
special case. �

Remark 5 (Relaxation of set-based invalidation)
Instead of binary (in)validation oracle, we can now mea-
sure the “degree of validation” by computing the Wasser-

stein distance 2W2

(
1

(1−2x2
T
pT)3/2

1

vol
(
X̃0

) , 1

vol
(
X̃T
)
)

be-

tween the model predicted and experimentally measured
joint PDFs. More importantly, it dispenses off the con-
servatism in barrier certificate based model validation by
showing that the goodness of a model depends on the mea-
sures over the same pair of supports X̃0 and X̃T , than
on the supports themselves. Indeed, given a joint PDF
ξ (xT , p, T ) supported over X̃T at T = 4, from (43) we can
explicitly compute the initial PDF ξ0 (x0, p) supported
over X̃0 that, under the proposed model dynamics, yields
the prescribed PDF, i.e.

ξ0 (x0, p) =
1

(1 + 8x2
0p)

3/2
ξ

(
± x0√

1 + 8x2
0p
, p, 4

)
. (45)
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In other words, if the measurements find the initial den-
sity given by (45) and final density ξ (xT , p, T ) at T = 4,
then the Wasserstein distance at T = 4 will be zero,
thereby perfectly validating the model. This reinstates the
importance of considering the reachability of densi-
ties over sets than reachability of sets, for model val-
idation.

Remark 6 (Connections with Rantzer’s density
function-based invalidation) Similar to barrier cer-
tificates, Rantzer’s density functions [75] can provide de-
ductive invalidation guarantees (cf. Theorem 1 in [76])
by constructing a scalar function via convex program.
Various applications of these two approaches for tempo-
ral verification problems have been reported [77]. It is in-
teresting to note that the main idea of Rantzer’s density
function stems from an integral form of Liouville equa-
tion, given by (cf. Lemma A.1 in [75])

∫

XT
ξ dx −

∫

X0

ξ dx =
∫ T

0

∫

φt(X0)

∇x · (ξf) dx dt, (46)

where the initial set X0 gets mapped to the set XT at
time t = T , under the action of the flow φt(·) associ-
ated with the nonlinear dynamics ẋ = f (x). The con-
vex relaxation proposed for invalidation/safety verifica-
tion (Theorem 1 in [76]), strives to construct an artificial
“density” ξ = ξr (x, t) satisfying three conditions, viz. (i)
ξr (x, 0) > 0, ∀ x ∈ X0, (ii) ξr (x, T ) 6 0, ∀ x ∈ XT , and
(iii) ∇x · (ξrf) > 0, ∀x ∈ φt (X0) , t ∈ (0, T ). From (46),
such a construction results a “sign-based invalidation”,
and is only sufficient unless a Slater-like condition [78]
is satisfied. On the other hand, the “validation in proba-
bility” framework proposed in this paper, relies on Liou-
ville PDE-based exact arithmetic computation of ξ, and
is a direct simulation-based non-deductive formulation.
In this approach, model invalidation equals violation of
(46), not just the sign-mismatch of its left-hand and right-
hand side, and hence is necessary and sufficient. As
shown in this subsection, for Liouville-integrable non-
linear vector fields (not necessarily semi-algebraic), our
framework can recover the deductive falsification infer-
ence while bypassing the additional conservatism due
to SOS-based computation.

7 Effect of Initial Uncertainty

The inference for probabilistic model validation depends
on the initial PDF ξ0 (x0). To account robust inference
in the presence of initial PDF uncertainty, the notion of
PRVC was introduced in Section 5. However, for many
applications, it is desirable to characterize the sensitivity
of the gap on the choice of initial PDF. We motivate this
issue from two different perspectives.

(i) In predictive modeling applications like systems bi-
ology, an important problem is of model discrimination

[79,80], where one looks for an initial PDF that maxi-
mizes the gap between two models, which seem to ex-
hibit comparable performance. This idea is similar to
optimal input design for system identification.

(ii) In general, 2W2 (t) ∈ [0, sup ‖ y(t)− ŷ(t) ‖2], where
the supremum is taken over all inter-sample distances be-
tween the measured and model-predicted outputs. Thus,
2W2 is un-normalized and its absolute magnitude may
be difficult to interpret when validating a single model
against experimental data. Hence, given a set of admissi-
ble initial PDFs, it is important to quantify “worst-case”
2W2 (t), defined as sup

ξ0
2W2 (t), which could be used for

normalization.

The main result of this section is that the initial PDF
that maximizes Wasserstein distance, depends on the
model and true dynamics. In particular, we show that for
a linear dynamics pair, the gap is oblivious beyond the
first two moments of ξ0. We restrict ourselves to scalar
dynamics for this analysis.

7.1 Tools for analysis

Definition 3 (Quantile function) Consider the prob-
ability space (Ωy,F ,P) for the output random variable
Y . Let y := Y (ωy), for ωy ∈ Ωy. The quantile function
Qy : Ωy 7→ [0, 1], is defined as the generalized inverse of
the CDF for Y , i.e.

Qy (ς) := inf (y ∈ Ωy : ς ≤ P (Y ≤ y)) . (47)

Here ς ∈ [0, 1] denotes probability mass.

Proposition 3 (Quantile transport PDE)[81] Con-
sider the scalar SDE dx (t) = f (x) dt+ g (x) dβ, where
β is the standard Wiener process. Then the quantile
Fokker-Planck equation (QFPE), given by

∂tQ = f (Q, t)− 1
2
∂Q (g (Q, t))2 +

1
2

(g (Q, t))2 ∂ςςQ

(∂ςQ)2 ,

describes the transport of quantile function Q (ς, t) for
the process x(t).

Proposition 4 (Quantile transformation rule)[82]
For an algebraic map y = h (x), we have

Qy (ς) =
{
h ◦Qx (ς) if h(·) is non-decreasing,
h ◦Qx (1− ς) if h(·) is non-increasing.

(48)

Next, we work out some specific results by imposing
structural assumptions on the true and model dynamics.
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7.2 Deterministic linear systems

Let the dynamics of the two systems be

ẋi = aix, yi = cix, ai < 0, ci > 0, i = 1, 2. (49)

Theorem 4 For any initial density ξ0 (x0), the Wasser-
stein gap between the systems in (49), is given by

2W2 (t) =
√
m20

∣∣∣c1ea1t − c2ea2t
∣∣∣, (50)

where m20 = µ2
0 + σ2

0, is the second raw moment of
ξ0 (x0), while µ0 and σ0 are its mean and standard devi-
ation, respectively.

Proof. For (49), Qyi = ciQxi , and the QFPE reduces
to a linear PDE ∂tQxi = aiQxi , yielding Qxi (ς, t) =
Q0 (ς) eait, where Q0 is the initial quantile function cor-
responding to ξ0. Thus, we have

( 2W2 (t))2 =
∫ 1

0

(Qy1 (ς, t)−Qy2 (ς, t))2
dς

=
(
c1e

a1t − c2ea2t
)2 ∫ 1

0

(Q0 (ς))2
dς. (51)

Since the quantile function maps probability to the sam-
ple space, hence x0 = Q0 (ς), and dς = ξ0 (x0) dx0. Con-
sequently, we can rewrite (51) as

( 2W2 (t))2 =
(
c1e

a1t − c2ea2t
)2 ∫ ∞

−∞
x2

0 ξ0 (x0) dx0

︸ ︷︷ ︸
m20

.

Taking square root to both sides, we obtain the result.
It’s straightforward to check thatm20 = µ2

0+σ2
0 , relating

the central moments with m20. �

Remark 7 ( 2W2 has limited dependence on ξ0)
The above result shows that the Wasserstein gap between
scalar linear systems, depends on the initial density up
to mean and variance. Any other aspect (skewness, kur-
tosis etc.) of ξ0, even when it’s non-Gaussian, has no
effect on 2W2 (t). The next example demonstrates that
our result: “the initial PDF with maximum second raw
moment, maximizes Wasserstein distance” (Fig. 12),
may be counterintuitive in some situations.

Example 6 (Uniform initial PDF may not max-
imize 2W2) For (49), let the set of admissible initial
PDFs be S0 := {ξ0 : supp (ξ0) = [a, b] , ξ0 (x0) =

1
(b−a)α+β−1B(α,β)

(x0 − a)α−1(b− x0)β−1, α > 0, β > 0},
i.e. the set of all scaled beta PDFs supported on
[a, b]. One can readily compute that µ0 = αb+βa

α+β , and

σ2
0 = αβ(b−a)2

(α+β)2(α+β+1) . For α = β = 1, ξ0 = U ([a, b]), and
for α = β = 1

2 , ξ0 = A ([a, b]). Thus, we have

m20 (U [a, b]) =
1
3
(
a2 + b2 + ab

)
, (52)

m20 (A[a, b]) =
1
8
(
3a2 + 3b2 + 2ab

)
, (53)

and hence m20 (A[a, b]) > m20 (U [a, b]), ∀ b > a. From
Theorem 4, 2W2(t) trajectory for uniform initial PDF,
stays below the same for arcsine initial PDF, as shown
in Fig. 13.

Fig. 12. The results of Section 4 can be summarized through
a graphical algorithm illustrated above. For scalar linear sys-
tems, given a set of admissible initial PDFs over state space,
we construct concentric circles centered at origin, over the
two dimensional (µ0, σ0) subspace of the (infinite-dimen-
sional) moment space. From (50), ξ0 corresponding to the
circle with largest radius, maximizes 2W2(t), ∀t > 0. For
affine systems, (54) implies a similar construction in (µ0, σ0)

subspace, with circles centered at
(
− q(t)
p(t)

, 0
)

. The direction

of this translation along µ0 axis, depends on parameters
(ai, bi, ci, di), i = 1, 2, of the systems under comparison.

Remark 8 (Discrete-time linear systems) Con-
sider the true and model maps x(k+1)

i = aix
(k)
i , y

(k)
i =

cix
(k)
i , i = 1, 2, where k ∈ N ∪ {0}, denotes the discrete

time index. From linear recursion, one can obtain a
result similar to (50): W (k) =

√
m20

∣∣∣c1ak1 − c2ak2
∣∣∣.

Remark 9 (Linear Gaussian systems) For the
linear Gaussian case, one can verify (50) without
resorting to the QFPE. To see this, notice that if
ξ0 (x0) = N

(
µ0, σ

2
0

)
, then the state PDFs evolve as

ξxi (xi, t) = N
(
µxi (t) , σ2

xi (t)
)
, where µxi (t) and

σ2
xi (t) satisfy their respective state and Lyapunov equa-

tions, which, in the scalar case, can be solved in closed
form. Since ηyi (yi, t) = N

(
ciµxi (t) , c2iσ

2
xi (t)

)
, and

2W2 between two Gaussian PDFs is known [47] to be√
(µy1 − µy2)2 + (σy1 − σy2)2, the result follows.
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Fig. 13. Wasserstein time histories between linear system
pair (49) with ξ0 asA ([a, b]) and U ([a, b]), respectively. Here
a = −3, b = 3, and we set sampling interval ∆tk = 0.5. We
observe that the Wasserstein gap for ξ0 = A ([a, b]) remains
above the same for ξ0 = U ([a, b]), as predicted by Theorem
4. The solid lines are direct computation from (50), while the
dashed lines are Monte Carlo estimates of 2W2 using (15).

Remark 10 (Affine dynamics) Instead of (49), if the
dynamics are given by ẋi = aix+ bi, yi = cix+ di, i =
1, 2, then by variable substitution, one can derive that

Qxi (ς, t) = Q0 (ς) eait +
bi
ai

(
eait − 1

)
. Hence, we get

2W2 (t) =
√

(p (t))2
m20 + 2p (t) q (t)m10 + (q (t))2

,(54)

where m10 = µ0, p (t) := (c1ea1t − c2ea2t), and q (t) :=
b1c1
a1

(
ea1t − 1

)
− b2c2

a2

(
ea2t − 1

)
+ (d1 − d2).

7.3 Stochastic linear systems

Consider two stochastic dynamical systems with linear
drift and constant diffusion coefficients, given by

dxi = aix dt+ bi dβ, yi = cix, i = 1, 2, (55)

where β is the standard Wiener process.

Theorem 5 For any initial density ξ0 (x0), the Wasser-
stein gap 2W2 (t) between the systems in (55), is given by

2W2 (t) =
√

(p (t))2
m20 + 2p (t) r (t) s (F0) + (r (t))2

,(56)

where r (t) :=
|b1|c1√

2a1

√
e2a1t − 1− |b2|c2√

2a2

√
e2a2t − 1, and

s (F0) :=
√

2 E
[
x0 erf−1 (2F0 (x0)− 1)

]
, F0 being the

CDF of x0.

Proof. For systems (55), quantile functions for the
states evolve as (p. 102, [81])

Qxi (ς, t) = Q0 (ς) eait + |bi|QN (ς)

√
e2ait − 1

2ai
, (57)

where QN (ς) :=
√

2 erf−1 (2ς − 1), is the standard nor-
mal quantile. Thus, the Wasserstein distance becomes

( 2W2 (t))2 =
∫ 1

0

(c1Qx1 (ς, t)− c2Qx2 (ς, t))2
dς

= (p (t))2
∫ 1

0

(Q0 (ς))2
dς

+ 2p (t) r (t)
∫ 1

0

Q0 (ς)QN (ς) dς

+ (r (t))2
∫ 1

0

(QN (ς))2
dς. (58)

Notice that the first and third integrals are m20 and
1, respectively. Since ς = F0 (x0), the second integral
becomes

∫ ∞

−∞
x0 F

−1
N ◦ F0 (x0) ρ0 (x0) dx0

=
√

2 E
[
x0 erf−1 (2F0 (x0)− 1)

]
= s (F0) . (59)

This completes the proof. �

Remark 11 (Gaussian case) Consider the spe-
cial case when ξ0 (x0) = N

(
µ0, σ

2
0

)
. Then Q0 (ς) =

µ0 + σ0QN (ς), and hence the second integral equals σ0.
Thus, if the initial density is normal, then

2W2 (t) =
√

(p (t))2
m20 + 2p (t) r (t)σ0 + (r (t))2

, (60)

a function of µ0 and σ0, which can be verified otherwise
by solving the mean and variance propagation equations.

8 Upper Bounds for 2W2 for Discrete-time Lin-
ear Gaussian Systems

The objective of this Section is to derive an upper bound
of Wasserstein gap for discrete-time linear systems with
ξ0 (x0) = N (0, P0), in terms of the spectrums of the
systems under comparison, and initial covariance. This is
done by relating 2W2(k) withDKL(k), thus providing an
offline estimate of the Wasserstein gap. We only provide
LTI result below; extension for the LTV case is reported
in [2].

Theorem 6 Consider two discrete-time stable LTI sys-
tems xk+1 = Axk, and x̂k+1 = Âx̂k, k ∈ N ∪ {0}. Let
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the initial PDF ξ0 (x0) = N (0, P0). Then, 2W2 (k) 6√
2 (tr (P0))1/2 ||Â−k||F ΩLTI (k), where

ΩLTI (k) ,

(
||Ak||2F ||Â−k||2F (tr (P0))2 − log

(
ns∏

i=1

ϑ2k
i

ϑ̂2k
i

)
− ns

) 1
2

where the spectrum forA is {ϑi}nsi=1, and for Â is {ϑ̂i}nsi=1.

Proof We know that

ξk = N
(

0, AkP0A
k>
)

= N (0, Pk) ,

ξ̂k = N
(

0, ÂkP0Â
k>
)

= N
(

0, P̂k
)
. (61)

Therefore,

DKL

(
ξk||ξ̂k

)
= DKL

(
Pk||P̂k

)

= tr
(
P̂−1
k Pk − I

)
− log det

(
P̂−1
k Pk

)
. (62)

Now if we assume that the spectrum for P0 is

{ρi}nsi=1, then from (62), det (Pk) =
ns∏

i=1

(
ρiϑ

2k
i

)
⇒

log det
(
P̂−1
k Pk

)
= log

ns∏

i=1

ϑ2k
i

ϑ̂2k
i

. Thus, DKL

(
Pk||P̂k

)
=

tr
(
P̂−1
k Pk

)
− log

ns∏

i=1

ϑ2k
i

ϑ̂2k
i

− ns.

Now, observe that tr
(
P̂−1
k Pk

)
6 tr

(
P̂−1
k

)
tr (Pk),

since covariance matrices are symmetric positive
semi-definite. However, tr (Pk) = tr

(
AkP0A

k>
)

=

tr
(
Ak
>
AkP0

)
6 tr

(
Ak
>
Ak
)

tr (P0) = ||Ak||2F tr (P0);
where we have used the fact that trace of a matrix prod-
uct is invariant under cyclic permutation of the matri-
ces. Likewise, tr

(
P̂−1
k

)
6 ||Â−k||2F tr (P0). Combining

these results, we get

DKL
(
Pk||P̂k

)
6 ||Ak||2F ||Â−k||2F (tr (P0))2 − log

ns∏

i=1

ϑ2k
i

ϑ̂2k
i

− ns
︸ ︷︷ ︸

(ΩLTI(k))2

.

Now to relate DKL with 2W2, we invoke the TCI
for Gaussian case [59], which states 2W2 (k) 6√

2λmax

(
P̂−1
k

)
DKL (k). But λmax

(
P̂−1
k

)
6 tr

(
P̂−1
k

)
6

||Â−k||2F tr (P0). These two, coupled with TCI, results

2W2 (k) 6
√

2 (tr (P0))1/2 ||Â−k||F ΩLTI (k) . (63)

Fig. 14. Starting with N (0, P0), time histories for 2W2(k)
and its upper bound (64) for two discrete-time LTI systems,

with A and Â as shown. Since the systems are stable, both

2W2(k) and ‖ P 1/2
k − P̂ 1/2

k ‖F asymptotically approach zero.

Remark 12 (A sharper upper bound) Instead of re-
lating 2W2 with the spectrum of the LTI systems, one can
obtain a sharper bound (see Appendix F for proof):

2W2(k) ≤ ‖ P 1/2
k − P̂ 1/2

k ‖F , (64)

where Pk = AkP0A
k> , P̂k = ÂkP0Â

k> ; the equal-
ity holds when Pk and P̂k commute, resulting an in-
teresting Lie bracket condition on system matrices:[
AkP0A

k> , ÂkP0Â
k>
]

= 0. For two Schur-Cohn sta-

ble matrices A and Â, Fig. 14 illustrates (64) with

P0 =

[
1 0

0 3

]
.

9 Conclusions

We have presented a probabilistic model validation
framework for nonlinear systems. The notion of soft
validation allows us to quantify the degree of mismatch
of a proposed model with respect to experimental mea-
surements, thereby guiding for model refinement. A key
contribution of this paper is to introduce transport-
theoretic Wasserstein distance as a validation metric to
measure the difference between distributional shapes
over model-predicted and experimentally observed out-
put spaces. The framework presented here applies to

19



any deterministic or stochastic nonlinearity, not nec-
essarily semialgebraic type. In addition to providing
computational guarantees for probabilistic inference,
we also recover existing nonlinear invalidation results in
the literature. Novel results are given for discriminating
linear models.
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A Computing 2W2 (ηb (x;α, β) , ηb (x;β, α))

We denote I−1
t (α, β) as the inverse of the beta CDF,

Ix (α, β) :=
B (x;α, β)
B (α, β)

as the regularized incomplete

beta function, and B (x;α, β) :=
∫ x

0

zα−1 (1− z)β−1
dz

as the incomplete beta function.

Theorem 7 2W2 (ηb (x;α, β) , ηb (x;β, α)) =√
α (α+ 1) + β (β + 1)
(α+ β) (α+ β + 1)

− 2
(

β

α+ β
− J

)
,

J :=
1

β + 1

∫ 1

0

(
I−1
t (α, β)

)1−α (
1− I−1

t (α, β)
)1−β

(
I−1
t (β, α)

)β+1
2F1

(
β + 1, 1− α;β + 2; I−1

t (β, α)
)
dt.

Proof. From (15), we have

2W
2
2 (fb (x;α, β) , fb (x;β, α))

=
∫ 1

0

(
I−1
t (α, β)− I−1

t (β, α)
)2
dt. (A.1)

The following identities, stated without proof, will be
useful for the evaluation of (A.1).

Property 1

∫
I−1
t (a, b) dt =

1
(a+ 1)B (a, b)

(
I−1
t (a, b)

)a+1

2F1

(
a+ 1, 1− b; a+ 2; I−1

t (a, b)
)

+ constant.

Property 2

∫ (
I−1
t (a, b)

)2
dt =

1
(a+ 1)B (a, b)

(
I−1
t (a, b)

)a+1

(
2F1

(
a+ 1, 1− b; a+ 2; I−1

t (a, b)
)
−

2F1

(
a+ 1,−b; a+ 2; I−1

t (a, b)
))

+ constant.

Property 3
I−1
0 (a, b) = 0, and I−1

1 (a, b) = 1.

Property 4 (Gauss Theorem)

2F1 (A,B;C; 1) =
Γ (C) Γ (C −A−B)
Γ (C −A) Γ (C −B)

.

Property 5
d

dt
I−1
t (a, b) = B (a, b)

(
I−1
t (a, b)

)1−a (
1− I−1

t (a, b)
)1−b

.

Using Properties 2 and 3, we get

∫ 1

0

(
I−1
t (α, β)

)2
dt =

1
(α+ 1)B (α, β)

[ 2F1 (α+ 1,

1− β;α+ 2; 1) − 2F1 (α+ 1,−β;α+ 2; 1)] .
(A.2)
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Recalling that Γ (k + 1) = kΓ (k), Property 4 results

2F1 (α+ 1, 1− β;α+ 2; 1) =
Γ (α+ 2) Γ (β)
Γ (α+ β + 1)

, (A.3)

2F1 (α+ 1,−β;α+ 2; 1) =
Γ (α+ 2) βΓ (β)

(α+ β + 1) Γ (α+ β + 1)
.

(A.4)

Substituting the above expressions in (A.2), we obtain

∫ 1

0

(
I−1
t (α, β)

)2
dt=

α (α+ 1)
(α+ β) (α+ β + 1)

, similarly
∫ 1

0

(
I−1
t (β, α)

)2
dt=

β (β + 1)
(α+ β) (α+ β + 1)

. (A.5)

Thus, (A.1) simplifies to

2W
2
2 (ηb (x;α, β) , ηb (x;β, α)) =

α (α+ 1) + β (β + 1)
(α+ β) (α+ β + 1)

−2
∫ 1

0

I−1
t (α, β) I−1

t (β, α) dt. (A.6)

To evaluate the remaining integral in (A.6), we employ
integration-by-parts with f (t) := I−1

t (α, β) as the first
function and g (t) := I−1

t (β, α) as the second. Now, we
know that

∫ 1

0
f (t) g (t) dt equals

[
f (t)

∫
g (t) dt

] ∣∣∣∣
t=1

t=0︸ ︷︷ ︸
I

−
∫ 1

0

(
f ′ (t)

∫
g (t) dt

)
dt

︸ ︷︷ ︸
J

. (A.7)

From Properties 1 and 3, we get

I =
[

1
(β + 1)B (α, β)

I−1
t (α, β)

(
I−1
t (β, α)

)b+1

2F1 (b+ 1, 1− a; b+ 2; 1)]

∣∣∣∣∣

t=1

t=0

= 2F1 (β + 1, 1− α;β + 2; 1)
(β + 1)B (α, β)

=
β

α+ β
. (A.8)

Further, Properties (1) and (5) yield

J =
1

β + 1

∫ 1

0

(
I−1
t (α, β)

)1−α (
1− I−1

t (α, β)
)1−β

(
I−1
t (β, α)

)β+1
2F1

(
β + 1, 1− α;β + 2; I−1

t (β, α)
)
dt.

(A.9)

Combining (A.6), (A.7), (A.8) and (A.9), the result fol-
lows. �

B On the stationary density of nonlinear sys-
tems with multiple stable equilibria

Proposition 5 Consider a nonlinear dynamical system
ẋ(t) = f (x(t)), having multiple stable equilibria {x?i }n

?

i=1.
Let us assume that the system does not admit any in-
variant set other than these stable equilibria. Also, letRi
be the region-of-attraction for the ith equilibrium point.
If the dynamics evolves from an initial PDF ξ0, then its
stationary PDF is given by

ξ∞(x) =
n?∑

i=1

m?
i δ (x− x?i ) , (B.1)

where m?
i =

∫

supp(ξ0)∩Ri
ξ0 (x0) dx0.

Proof. Since {x?i }n
?

i=1 is the unique set of attractors,
it is easy to verify that the stationary PDF is of the
form (B.1); however, it remains to determine the weights
m?
i . We observe that either supp (ξ0) ⊆ Ri, for some

i = 1, . . . , n?, or supp (ξ0) intersects multiple Ri.

Now, recall that Ri , {x0 : ẋ(t) = f (x(t)) , x(0) =
x0, limt→∞ x (t) = x?i }. Thus, if supp (ξ0) ⊆ Ri,
then m?

i =
∫

supp(ξ0)
dm0 =

∫
supp(ξ0)

ξ (x0) dx0 = 1,
and consequently, m?

j = 0, ∀j = 1, . . . , n?, j 6= i,
since

∫
ξ∞ (x) dx = 1. In this case, notice that

supp (ξ0) = supp (ξ0) ∩Ri.

On the other hand, if supp (ξ0) intersects multiple
Ri, then only for x0 ∈ supp (ξ0) ∩ Ri, the inte-
gral curves of ẋ(t) = f (x(t)) , x(0) = x0, will sat-
isfy limt→∞ x (t) = x?i . In other words, only the
set supp (ξ0) ∩ Ri contributes to m?

i , i.e. m?
i =∫

supp(ξ0)∩Ri dm0 =
∫

supp(ξ0)∩Ri ξ (x0) dx0 < 1.

Combining the above two cases, we conclude m?
i =∫

supp(ξ0)∩Ri
ξ0 (x0) dx0. �

C Proof for Lemma 1

(i) Proof of P (X > ε) 6 P (Y + Z > ε): Let A1 :=
{ω : X (ω) > ε} and A2 := {ω : Y (ω) + Z (ω) > ε}.
If we denote Bε1 := {ω : X (ω) 6 ε} and Bε2 := {ω :
Y (ω) + Z (ω) 6 ε}, then

X (ω)6 Y (ω) + Z (ω) < ε ∀ ω ∈ Ω
⇒ Bε2 ⊆Bε1 ⇒ P (Bε2) 6 P (Bε1)

⇒ 1− P (Bε2)> 1− P (Bε1)⇒ P (A2) > P (A1) .
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(ii) Proof of P (Y + Z > ε) 6 P
(
Y >

ε

2

)
+P

(
Z >

ε

2

)
:

Let A := {ω : Y (ω) + Z (ω) > ε}, B := {ω : Y (ω) 6
ε/2}, and C := {ω : Z (ω) 6 ε/2}. Next, we write

P (A) = P ((A ∩Bc ∩ Cc) ∪Bc ∪ Cc) . (C.1)

Taking E1 := A ∩ Bc ∩ Cc, E2 := Bc, E3 := Cc,
and noting that P (E1) = P (E1 ∩ E2) = P (E3 ∩ E1) =
P (E1 ∩ E2 ∩ E3), from Boole-Bonferroni inequality (Ap-
pendix C, [83]), (C.1) yields

P (A) = P (E1 ∪ E2 ∪ E3) = P (E2) + P (E3)− P (E2 ∩ E3)
6 P (E2) + P (E3) .

�D Proof for Theorem 2

Since Wasserstein distance is a metric, from triangle in-
equality

2W2 (ηm, η̂n) 6 2W2 (ηm, η) + 2W2 (η̂n, η)
6 2W2 (ηm, η) + 2W2 (η̂n, η̂) + 2W2 (η, η̂)
⇒ 2W2 (ηm, η̂n) − 2W2 (η, η̂) 6 2W2 (ηm, η) + 2W2 (η̂n, η̂) .

Combining the above with Lemma 1, we have

P
(∣∣∣∣ 2W2 (ηm, η̂n) − 2W2 (η, η̂)

∣∣∣∣ > ε

)
6

P
(

2W2 (ηm, η) >
ε

2

)
+ P

(
2W2 (η̂n, η̂) >

ε

2

)
, (D.1)

where each term in the RHS of (D.1) can be separately
upper-bounded using Theorem 1 with θ 7→ ε

2
. Hence the

result. �

E Derivation of stationary PDF (31)

We re-write the Itô SDE (30) as

{
dx1

dx2

}
=





x2

− ∂

∂x1
U (x1)− cx2



 dt+

{
0

1

}
dW, (E.1)

with U (x1) := 1
2

(
ax2

1 − b cos 2x1

)
. An Itô SDE with

drift nonlinearity of the form (E.1), admits [84] station-
ary PDF η∞ (x1, x2) ∝ exp

(
− c
QH (x1, x2)

)
, where the

Hamiltonian function H (x1, x2) := U (x1) + 1
2x

2
2.

F Proof for 2W2(k) ≤‖ P 1/2
k − P̂ 1/2

k ‖F

It is known (Fact 8.19.21, [85]) that for 0 6 p 6 1,

tr
(
P pk P̂

p
k

)
6 tr

(
P̂

1/2
k PP̂

1/2
k

)p
. Taking p = 1

2 , we get

tr
(
P

1
2
k P̂

1
2
k

)
6 tr

(
P̂

1
2
k PP̂

1
2
k

) 1
2

= tr
(
P

1
2
k P̂P

1
2
k

) 1
2
, (F.1)

where the last equality follows from the symmetry of
Wasserstein distance, and can be separately proved by
noting that tr

(√
MM>

)
= tr

(√
M>M

)
for M =

P
1/2
k P̂

1/2
k .

Next, recall that square root of a positive definite matrix
is unique, and matrix square root commutes with matrix
transpose. Thus, we have

‖ P
1
2
k − P̂

1
2
k ‖

2
F , tr

[(
P

1
2
k − P̂

1
2
k

)> (
P

1
2
k − P̂

1
2
k

)]

= tr
[(
P

1
2
k

)>
P

1
2
k −

(
P

1
2
k

)>
P̂

1
2
k −

(
P̂

1
2
k

)>
P̂

1
2
k +

(
P̂

1
2
k

)>
P̂

1
2
k

]

= tr [Pk] + tr
[
P̂k

]
− 2 tr

[
P

1
2
k P̂

1
2
k

]

≥ tr [Pk] + tr
[
P̂k

]
− 2 tr

(
P

1
2
k P̂P

1
2
k

) 1
2

︸ ︷︷ ︸
(2W2(k))2

(using (F.1))

and hence, 2W2(k) ≤‖ P 1/2
k − P̂ 1/2

k ‖F . From (F.1), the
equality condition is PkP̂k = P̂kPk. �
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