1 KL Expansion for Compound Poisson Process (Parikshit)
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parameters A, o, 1, T > 0, and n € N. From (12) and (14), we have
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Thus, solving for > 0 is same as finding positive abscissa for intersections of tan x and a straight line passing
through the origin with slope > 45° (since m > 1, from (17)). Such intersections happen in either first or

fourth quadrant, depending on the value of m. Hence, x will be a function of (2n — 1) g, up to translation.

Consequently, the KL expansion of compound Poisson process Y (w,t) is given by

chn 6n (1), (18)

where A,, solves

o7 -

A
(O’T A) , Ao,u,T>0;neN. (19)



Further, ¢, (w) are i.i.d random variables from N (0, 1), and the eigenfunctions ¢,,(t) = % sin (i),
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2 KL Expansion for Poisson White Noise

Taking the time derivative of the KL expansion of compound Poisson process in m.s. sense, we get the KL
expansion for Poisson white noise Z (w,t) as
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where the A, ¢, (w) and 3, are as in the preceding section.

Remark 1 Setting the parameters A = 1, p = 0, in (1), we recover Wiener process as a special case of
compound Poisson process. Substituting the same in (12), we indeed recover the well-known eigenvalues and
eigenfunctions of the covariance kernel of Wiener process, and consequently, the KL expansion of Gaussian
white noise.

Remark 2 In this document, we used the following definition of compound Poisson process Y (w,t):
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where N(t) is a homogeneous Poisson counting process with intensity parameter A > 0, and Y;(w) are i.i.d
random variables drawn from N° (,u, 02). The choice of Gaussian distribution is a working convenience. Instead
of Gaussian, one can take more general distribution forY;. In that case, Y (w,t) is still called compound Poisson
process as long as the chosen distribution forY; is independent to that of the counting process {N(t)}i>0.
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