KL Expansion for Compound Poisson Process (Parikshit) 1

$$R(s,t) = \lambda \sigma^2 \min(s,t) + st(\lambda \mu)^2, \tag{1}$$

$$\Lambda_n \phi_n(s) = (\lambda \mu)^2 s \int_0^T t \phi_n(t) dt + \lambda \sigma^2 \int_0^s t \phi_n(t) dt + \lambda \sigma^2 s \int_s^T \phi_n(t) dt,$$
 (2)

$$\Lambda_n \phi_n'(s) = (\lambda \mu)^2 \int_0^T t \phi_n(t) dt + \lambda \sigma^2 \left[s \phi_n(s) + \int_0^s \frac{\partial (t \phi_n(t))}{\partial s} dt \right]$$

$$+\lambda\sigma^2 \int_s^T \phi_n(t) dt + \lambda\sigma^2 s \left[-\phi_n(s) + \int_s^T \frac{\partial (\phi_n(t))}{\partial s} dt \right], \quad \text{differential w.r.t. } s$$
 (3)

$$\Lambda_n \phi_n'(s) = (\lambda \mu)^2 \int_0^T t \phi_n(t) dt + \lambda \sigma^2 \int_s^T \phi_n(t) dt, \tag{4}$$

$$\Lambda_n \phi_n''(s) = -\lambda \sigma^2 \phi_n(s), \quad \text{Let } \frac{\Lambda_n}{\lambda \sigma^2} =: \beta_n^2,$$
(5)

$$\Rightarrow \phi_n(t) = A \sin\left(\frac{t}{\beta_n}\right) + B \cos\left(\frac{t}{\beta_n}\right)$$
 (6)

$$\Lambda_n \phi_n(0) = 0, \qquad B = 0, \tag{7}$$

$$\int_0^T \phi_n^2(t) dt = 1 \Rightarrow A \int_0^T \sin^2\left(\frac{t}{\beta_n}\right) dt = 1, \tag{8}$$

$$\int_{0}^{T} \phi_{n}^{2}(t) dt = 1 \Rightarrow A \int_{0}^{T} \sin^{2}\left(\frac{t}{\beta_{n}}\right) dt = 1,$$

$$\Rightarrow A = \frac{2}{\sqrt{\left[2T - \beta_{n} \sin\frac{2T}{\beta_{n}}\right]}},$$
(9)

$$\Rightarrow \phi_n(t) = \frac{2}{\sqrt{\left[2T - \beta_n \sin\frac{2T}{\beta_n}\right]}} \sin\left(\frac{t}{\beta_n}\right), \qquad \beta_n = \sqrt{\frac{\Lambda_n}{\lambda \sigma^2}}, \tag{10}$$

substituting s=T in the first deriv. and then the value of the Poisson eigfn. (11)

$$\frac{\Lambda_n}{\beta_n} \cos \frac{T}{\beta_n} = (\lambda \mu)^2 \beta_n^2 \sin \frac{T}{\beta_n} - (\lambda \mu)^2 T \beta_n \cos \frac{T}{\beta_n}, \quad \text{transcendental eqn in } \Lambda_n$$
 (12)

substituting s=T in the first eqn and then the value of the Poisson eigfn. (13)

$$\Lambda_n \sin \frac{T}{\beta_n} = \left[(\lambda \mu)^2 T + \lambda \sigma^2 \right] \left[\beta_n^2 \sin \frac{T}{\beta_n} - T \beta_n \cos \frac{T}{\beta_n} \right], \quad \text{transcendental eqn in } \Lambda_n$$
 (14)

(**Abhishek**) Since $\beta_n = \sqrt{\frac{\Lambda_n}{\lambda \sigma^2}}$, solving for eigenvalues Λ_n boils down to solve for β_n as a function of the parameters $\lambda, \sigma, \mu, T > 0$, and $n \in \mathbb{N}$. From (12) and (14), we have

$$\frac{1}{(\lambda \mu)^2} \frac{\Lambda_n}{\beta_n} \cos \frac{T}{\beta_n} = \frac{1}{(\lambda \mu)^2 T + \lambda \sigma^2} \Lambda_n \sin \frac{T}{\beta_n}, \tag{15}$$

$$\Rightarrow \beta_n \tan \frac{T}{\beta_n} = T + \frac{\sigma^2}{\lambda u^2}, \quad \text{since } \Lambda_n \neq 0, \, \forall n \in \mathbb{N},$$
 (16)

$$\Rightarrow \tan x = m x, \quad \text{where } x \triangleq \frac{T}{\beta_n}, \text{ and } m \triangleq 1 + \frac{1}{\lambda T} \left(\frac{\sigma}{\mu}\right)^2.$$
 (17)

Thus, solving for x > 0 is same as finding positive abscissa for intersections of $\tan x$ and a straight line passing through the origin with slope $> 45^{\circ}$ (since m > 1, from (17)). Such intersections happen in either first or fourth quadrant, depending on the value of m. Hence, x will be a function of $(2n-1)\frac{\pi}{2}$, up to translation. Consequently, the KL expansion of compound Poisson process $Y(\omega,t)$ is given by

$$Y(\omega, t) = \sum_{n=1}^{\infty} \sqrt{\Lambda_n} \zeta_n(\omega) \phi_n(t), \qquad (18)$$

where Λ_n solves

$$\tan\left(\sigma T\sqrt{\frac{\lambda}{\Lambda_n}}\right) = \left[1 + \frac{1}{\lambda T} \left(\frac{\sigma}{\mu}\right)^2\right] \left(\sigma T\sqrt{\frac{\lambda}{\Lambda_n}}\right), \qquad \lambda, \sigma, \mu, T > 0; n \in \mathbb{N}.$$
(19)

Further, $\zeta_n(\omega)$ are i.i.d random variables from $\mathcal{N}(0,1)$, and the eigenfunctions $\phi_n(t) = \frac{2}{\sqrt{\left[2T - \beta_n \sin \frac{2T}{\beta_n}\right]}} \sin \left(\frac{t}{\beta_n}\right)$, $\beta_n \triangleq \sqrt{\frac{\Lambda_n}{\lambda \sigma^2}}$.

2 KL Expansion for Poisson White Noise

Taking the time derivative of the KL expansion of compound Poisson process in m.s. sense, we get the KL expansion for Poisson white noise $Z(\omega,t)$ as

$$Z(\omega, t) = \sum_{n=1}^{\infty} \sqrt{\Lambda_n} \zeta_n(\omega) \frac{\frac{2}{\beta_n}}{\sqrt{\left[2T - \beta_n \sin \frac{2T}{\beta_n}\right]}} \cos \left(\frac{t}{\beta_n}\right), \tag{20}$$

where the Λ_n , $\zeta_n(\omega)$ and β_n are as in the preceding section.

Remark 1 Setting the parameters $\lambda = 1$, $\mu = 0$, in (1), we recover Wiener process as a special case of compound Poisson process. Substituting the same in (12), we indeed recover the well-known eigenvalues and eigenfunctions of the covariance kernel of Wiener process, and consequently, the KL expansion of Gaussian white noise.

Remark 2 In this document, we used the following definition of compound Poisson process $Y(\omega,t)$:

$$Y(\omega,t) = \begin{cases} 0, & if N(t) = 0, \\ \sum_{j=1}^{N(t)} Y_j(\omega), & if N(t) > 0, \end{cases}$$

$$(21)$$

where N(t) is a homogeneous Poisson counting process with intensity parameter $\lambda > 0$, and $Y_j(\omega)$ are i.i.d random variables drawn from $\mathcal{N}(\mu, \sigma^2)$. The choice of Gaussian distribution is a working convenience. Instead of Gaussian, one can take more general distribution for Y_j . In that case, $Y(\omega, t)$ is still called compound Poisson process as long as the chosen distribution for Y_j is independent to that of the counting process $\{N(t)\}_{t\geq 0}$.