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Abstract— Often in the literature, stochastic dynamical sys-
tems are approximated by moment closure techniques, closure
in second moment being common practice. This refers to
truncating the statistics generated by time varying probabil-
ity density functions which evolve under the action of the
trajectory-level dynamics. Although it is known that such mo-
ment closure approximations may lead to incorrect inferences,
explicit examples at the dynamical systems level, are rare in
the literature. In this paper, using optimal transport theory, we
construct two dynamical systems such that starting from the
same initial condition ensemble, their first two moments match
at all times, but the underlying probability densities do not.
This example serves as a motivation to consider the entire joint
probability density function, as opposed to first few moments,
for approximating stochastic systems in general, and stochastic
jump linear systems in particular.

I. INTRODUCTION

In recent times, stochastic jump systems [1] have emerged
as a powerful modeling framework for a variety of applica-
tions like communication networks [2], [3], nonlinear optics
[4], multi-target tracking [5], failure prone manufacturing
systems [6], and flight controllers subject to electromagnetic
disturbances [7]. These applications have the commonality
that the system dynamics undergo abrupt variations between
a finite number of modes. Although considerable progress
have been made in the analysis of such systems, often the
results have significant computational complexities depend-
ing on the nature of stochastic jumps and modal dynamics.
This is particularly true for problems like uncertainty propa-
gation and estimation [5], [8], [9], where one has additional
probabilistic uncertainties (e.g. initial condition, parametric)
than the occurence of random jumps. An alternative then, is
to find a simpler abstraction of the system dynamics, upon
which one can perform the analysis and the results would
approximate those of the original stochastic jump system.

A. Related Work

Approximation of stochastic jump systems have been
studied in literature from the perspective of approximate
bisimulation [10], H∞ model reduction [11], and balanced
truncation [12]. These ideas quantify trajectory level close-
ness between the outputs of the original and approximated
system. From a statistical perspective, a natural approximate
model would be one that approximates the time varying
joint output probability density function (PDF) generated by
the original stochastic jump system. This idea of density
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level closeness appeared recently [13]–[15] in the context
of model validation. In practice, moment closure approx-
imations are widely used [16]–[18], where one derives a
model that matches first few statistical moments of the
original system. Since closure approximations truncate the
infinite dimensional moment dynamics, they can be thought
of as intermediate between trajectory level and density level
closeness. In particular, Gaussian moment closure, where all
except the first two moments are ignored, is often used in
the literature [16].

If the original dynamics generates non-Gaussian joint
output PDFs, then Gaussian moment closure, for example,
would result approximation errors. Since the joint PDF of the
original system changes over time, so does the approximation
error. Hence, it is difficult to gauge in general, whether
moment closure approximation error would be significant
or not, for most of the times. This, we believe, has partly
contributed to the popularity of the closure techniques, since
it may happen that the original system has a fast time
scale dynamics that moves the non-Gaussian transient PDFs
quickly to a Gaussian.

B. Contributions of This Paper

The purpose of this paper is to construct an approximation
for a given stochastic jump linear system (SJLS) such that
starting from the same joint PDF over the space of initial
conditions, the first two statistical moments generated by
the approximate and original dynamics match at all times,
however the joint PDFs do not. Such explicit example, to the
best of our knowledge, has been lacking in the literature.

A secondary contribution of this paper is the use of optimal
transport to construct an affine time varying (ATV) approxi-
mation for the SJLS, while matching the first two moments.
Unlike existing methods [10]–[12], we do not make any
a priori assumption on the structure of the approximate
dynamical system. While most previous works assume the
approximation to be structurally same (but reduced order)
as that of the original system, our results provide non-jump
approximation for jump linear system.

C. Structure of the Paper

This paper is organized as follows. In Section II, we
introduce discrete-time stochastic jump linear systems and
for Gaussian or MoG initial PDF, derive its joint state PDF
evolution in closed form. Then we derive the mean and
covariance evolution for the same. To demonstrate that the
choice of approximating model structure is non-trivial, in



Section III, we show that it is impossible to realize the mean-
covariance sequences generated by the stochastic jump linear
system via a linear time invariant dynamics, unless the jump
process is i.i.d. In Section IV, we briefly review the optimal
transport ideas. Section V combines the results of Section
II and the optimal transport ideas from Section IV, to de-
rive a constructive Gaussian moment closure approximation
for stochastic jump linear system. A numerical example is
worked out in Section VI. Section VII concludes the paper.

D. Notations

Most notations are standard. The set of natural numbers
is denoted as N, and N0 , N ∪ {0}. The symbol Symm+

denotes the space of symmetric positive semi-definite ma-
trices. The notation x ∼ ρ means that the random vector
x has the joint PDF ρ (x). We will use the abbreviation
“MoG” to mean mixture of Gaussians, and “G” to mean
Gaussians. For example, MoG(k) will denote the mixture of
Gaussian PDF at time k. Furthermore, ] denotes the push-
forward for a random vector, and the superscript ? refers to
optimality, unless defined otherwise. The notation N (µ,Σ)
denotes Gaussian PDF with mean µ and covariance Σ.

II. STOCHASTIC JUMP LINEAR SYSTEMS

A. Preliminaries

Definition 1: (Jump linear system) A discrete-time jump
linear system (JLS) with m ∈ N modes, is given by

x(k + 1) = Aσk
x(k), x ∈ Rn, (1)

where the discrete time index k ∈ N0, the set of non-negative
integers. The symbol {σk} denotes the switching sequence
of the jump system, i.e. σk : N0 7→ {1, 2, . . . ,m}. Thus, the
JLS (1) is characterized by (i) a set of m matrices {Ai}mi=1,
and (ii) a switching sequence {σk}k∈N0 .

Remark 1: (Stochastic jump linear system) The switch-
ing sequence {σk} may be generated through a deterministic
policy, or as a sample path realization of a discrete time
stochastic process over the finite set {1, 2, . . . ,m}. In the
latter case, (1) is referred as a stochastic jump linear system
(SJLS), and is characterized by the set of modal matrices
{Ai}mi=1, and the sequence of occupation probability vectors
{π (k)}k∈N0

, {π1 (k) , π2 (k) , . . . , πm (k)}k∈N0
governing

the stochastic switching sequence {σk}k∈N0
. In this paper,

we will consider approximating discrete time SJLS, given by
the tuple ({Ai}mi=1, {π (k)}k∈N0).

B. Uncertainty Propagation in SJLS

Next, we consider the evolution of initial condition un-
certainties through dynamics (1). For clarity of exposition,
we only consider the case where the joint PDF over initial
conditions is Gaussian, and the output vector y(k) ∈ Rn for
(1), is identical to the state x(k). It will be apparent from the
sequel that our results can be generalized to the case when
both these assumptions are violated, e.g. when the initial
PDF is a mixture of Gaussian, instead of Gaussian; and when
y(k) = Cσk

x(k), y ∈ Rno , no 6= n. For notational ease, we
will not consider these generalizations in this paper.

Lemma 1: Given m absolutely continuous random vectors
X1, . . . , Xm, with respective CDF Fj (x), and PDF ςj (x),
where j = 1, 2, . . . ,m, and x ∈ Rn, let X , Xj with

probability αj ∈ [0, 1],
m∑
i=1

αj = 1. Then, the CDF and PDF

of the n-dimensional random vector X are given by

F (x) =

m∑
j=1

αjFj (x) , ς (x) =

m∑
j=1

αjςj (x) . (2)

Proof: F (x) , P (X ≤ x) =

m∑
j=1

P (X = Xj)P (Xj ≤ x)

=

m∑
j=1

αjFj (x), where we have used the law of total

probability. Since each Xj and hence X , is absolutely

continuous, we have ς (x) =

m∑
j=1

αjςj (x).

A consequence of Lemma 1 is that the joint state and output
PDF of any stochastic jump system, not necessarily linear, is
of mixture type, namely a convex sum of component PDFs.
Next, we provide a closed form formula of the joint state
PDF evolution for SJLS (1), under the assumption that the
initial joint PDF is Gaussian.

Theorem 1: (SJLS joint state PDF at time k) Consider
a discrete-time SJLS ({Ai}mi=1, {π (k)}k∈N0) with the initial
Gaussian joint state PDF ς0 = N (µ0,Σ0), where µ0 ∈ Rn,
Σ0 ∈ Symm+. Then, the joint state PDF at time k, denoted
by ς (k), is given by

ς (k) =

m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1

(
k∏
r=1

πjr (r)

)
N
(
A∗jkµ0, A

∗
jk

Σ0A
∗>
jk

)
, (3)

where A∗jk ,
1∏
r=k

Ajr = AjkAjk−1
. . . Aj2Aj1 .

Proof: Starting from ς0 at k = 0, the modal PDF at
time k = 1, becomes

ςj(1) = N
(
Ajµ0, AjΣ0A

>
j

)
, j = 1, · · · ,m, (4)

From Lemma 1, it follows that the state PDF at k = 1, is

ς(1) =

m∑
j1=1

πj1(1)N
(
Aj1µ0, Aj1Σ0A

>
j1

)
, (5)

where πj1(1) is the occupation probability for mode j1 at
time k = 1. Notice that (5) is an MoG with m component
Gaussians. Next, we utilize the fact that linear transformation
of an MoG is an equal component MoG with linearly
transformed component means and congruently transformed
component covariances (see Theorem 6 and Corollary 7 in
[19]). This results the modal PDF at k = 2 as

ςj(2) =

m∑
j1=1

πj1(1)N
(
(AjAj1)µ0, (AjAj1)Σ0(AjAj1)>

)
,

(6)



for j = 1, . . . ,m; and consequently

ς(2) =

m∑
j2=1

m∑
j1=1

πj2(2)πj1(1)N
(
(Aj2Aj1)µ0,

(Aj2Aj1)Σ0(Aj2Aj1)>
)
. (7)

Continuing with this recursion till time k, we arrive at (3),
which is an MoG with mk Gaussian components.

Remark 2: From the above proof, it follows that if the
initial PDF ς0, instead of being joint Gaussian, were an

m0 component MoG given by ς0 =

m0∑
j0=1

αj0 N (µj0 ,Σj0),

m0∑
j0=1

αj0 = 1, then ς (k) would be an MoG with m0m
k

components, given by

ς (k) =

m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr (r)

)
αj0N

(
A∗jkµj0 , A

∗
jk

Σj0A
∗>
jk

)
. (8)

Next, we compute the mean and covariance of any mixture
PDF, not necessarily MoG, in terms of the means and
covariances of its component PDFs.

Lemma 2: (Mean-covariance of mixture PDF) Consider

any q-component mixture PDF ς(x) =

q∑
j=1

βjςj(x), with

q∑
j=1

βj = 1, that has component mean-covariance pairs

(µj ,Σj), j = 1, . . . , q. Then, the mean-covariance pair
(µmix,Σmix) for the mixture PDF ς(x), is given by

µmix =

q∑
j=1

βjµj , (9)

Σmix =

q∑
j=1

βj

(
Σj + (µj − µmix) (µj − µmix)

>
)
. (10)

Proof: By definition, mean vector of the mixture PDF
is

µmix ,
∫
Rn

xς(x)dx =

q∑
j=1

βj

∫
Rn

xςj(x)dx =

q∑
j=1

βjµj .

Next, covariance matrix of the mixture PDF is

Σmix , E
[
(x− µmix) (x− µmix)

>
]

= E
[
xx>

]
− µmixµ

>
mix

=

q∑
j=1

βj

∫
Rn

(x− µmix + µmix) (x− µmix + µmix)
>
ςj (x) dx

− µmixµ
>
mix

=

q∑
j=1

βj

(
Σj + (µj − µmix) (µj − µmix)

>
)
.

Corollary 2: (SJLS mean-covariance at time k) The
time evolution of the mean vector µ (k) for a discrete-
time SJLS ({Ai}mi=1, {π (k)}k∈N0) with initial Gaussian joint
state PDF ς0 = N (µ0,Σ0), is given by

µ (k) =

m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1

(
k∏
r=1

πjr (r)

)
A∗jkµ0︸ ︷︷ ︸

component mean

, (11)

and the evolution of the covariance matrix Σ (k) is given by

Σ (k) =

m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1

(
k∏
r=1

πjr (r)

) A∗jkΣ0A
∗>
jk︸ ︷︷ ︸

component covariance

+
(
A∗jkµ0 − µ(k)

) (
A∗jkµ0 − µ(k)

)>)
. (12)

Proof: The proof follows by combining Theorem 1 with
Lemma 2.

III. LIMITATION OF LTI MODEL STRUCTURE FOR SJLS
STATISTICS REALIZATION

Given the SJLS ({Ai}mi=1, {π (k)}k∈N0
), consider a can-

didate linear time invariant (LTI) approximation

x̂ (k + 1) = Â x̂ (k) . (13)

Starting from ς0 = N (µ0,Σ0), we would like to investigate
if an LTI map (13) exists that can realize the SJLS mean-
covariance sequences given by (11) and (12).

Theorem 3: (Generic SJLS statistics are not LTI re-
alizable) Starting from an initial joint state PDF ς0 =
N (µ0,Σ0), the mean-covariance sequences generated by a
discrete-time SJLS ({Ai}mi=1, {π (k)}k∈N0

), is LTI realizable
iff π (k) is independent of k, for all k ∈ N0.

Proof: If possible, suppose there exists an LTI map
(13), or equivalently a real square matrix Â, that realizes
the SJLS mean-covariance sequences given by (11) and
(12). Consider an arbitrary time interval ∆tk , [tk, tk+1)
with k ∈ N0, over which we claim Â : (µ(k),Σ(k)) 7→
(µ(k + 1),Σ(k + 1)). However, being a linear transfor-
mation, Â needs to satisfy µ(k + 1) = Âµ(k), and
Σ(k + 1) = ÂΣ(k)Â>. Since A∗jk+1

= Ajk+1
A∗jk , and

k+1∏
r=1

πjr (r) = πjk+1
(k + 1)

k∏
r=1

πjr (r), hence (11)-(12) yield

µ(k + 1) =

m∑
jk+1=1

πjk+1(k + 1)Ajk+1

m∑
jk=1

. . .

m∑
j1=1

(
k∏

r=1

πjr (r)

)
A∗jkµ0,

(14)

Σ(k + 1) =

 m∑
jk+1=1

πjk+1(k + 1)Ajk+1

 m∑
jk=1

m∑
jk−1=1

. . .

m∑
j1=1(

k∏
r=1

πjr (r)

)(
A∗jkΣ0A

∗>
jk +

(
A∗jkµ0 − µ(k)

)
(
A∗jkµ0 − µ(k)

)>)] m∑
jk+1=1

πjk+1(k + 1)Ajk+1

> .
(15)



For non-trivial case µ0 6= 0, requiring µ(k + 1) = Âµ(k)
from (11) and (14), we arrive at the matrix equation

m∑
jk+1=1

πjk+1
(k + 1)Ajk+1

= Â, (16)

which we recover again by requiring Σ(k+ 1) = ÂΣ(k)Â>

from (12) and (15), for non-trivial case Σ0 6= 0. Notice that
for general SJLS ({Ai}mi=1, {π (k)}k∈N0

), no constant matrix
Â can satisfy (16) unless π (k) is independent of k. Since our
choice of interval ∆tk was arbitrary, this conclusion holds
for each k ∈ N0, that is, (16) holds iff {π(k)}k∈N0

is a
sequence of constant occupation probability vectors.

Corollary 4: (When average dynamics realizes mean-
coavraince) Mean-covariance sequence generated by an i.i.d.
JLS ({Ai}mi=1, {π (k) = π}k∈N0) can be realized by an LTI

map (13) with Â =

m∑
i=1

πiAi. The same for a generic

SJLS can be realized by a linear time varying (LTV) map

x̂(k + 1) = Ãkx̂(k) with Ãk =

m∑
i=1

πi(k)Ai, namely by

selecting the “instantaneous average dynamics” from the
convex polytope of the modal matrices.

Remark 3: (SJLS mean-covariance recursion) Compar-
ing (11) with (14), and (12) with (15), we get the recursions

µ(k + 1) =

m∑
i=1

πi(k + 1)Aiµ(k), (17)

Σ(k + 1) =

(
m∑
i=1

πi(k + 1)Ai

)
Σ(k)

(
m∑
i=1

πi(k + 1)Ai

)>
.(18)

IV. MONGE-KANTOROVICH OPTIMAL TRANSPORT

A. Background

In this subsection, we provide some background on
Monge-Kantorovich optimal transport [20] that will be useful
for approximating the SJLS in first two statistical moments.
One key aspect of optimal transport theory is the definition
of a distance, called Wasserstein distance, between two given
PDFs ρ and ρ̂, that measures the shape difference between
them by quantifying the minimum amount of work needed
to morph one PDF to the other.

Definition 2: (Wasserstein distance) The L2 Wasserstein
distance of order 2 (hereafter referred simply as Wasserstein
distance W ), between two d-dimensional random vectors
y ∼ ρ, and ŷ ∼ ρ̂, is defined as

W (ρ, ρ̂) ,

(
inf

%∈P2(ρ,ρ̂)
E
[
‖ y − ŷ ‖2`2(Rd)

]) 1
2

, (19)

where the E [·] is taken with respect to the joint PDF % (y, ŷ)
that makes the cost function achieve the infimum. The
symbol P2 (ρ, ρ̂) denotes the set of all joint PDFs supported
over R2d, having finite second moments, whose first marginal
is ρ, and second marginal is ρ̂.

Remark 4: It can be shown [21] that W defines a metric
on the manifold of PDFs, and remains well defined between
the distributions even though the random vectors y and ŷ are
not absolutely continuous (i.e. ρ and ρ̂ don’t exist).

B. Optimal Transport Map a.k.a. Brenier Map

Definition 3: (Optimal transport map) The optimal
transport map β : Rd 7→ Rd associated with (19), that
satisfies y = β (ŷ), is defined as

β? , arginf
β(·)

∫
Rd

‖ β (ŷ)− ŷ ‖2`2(Rd) ρ̂ (ŷ) dŷ,

subject to ρ = β ] ρ̂. (20)
Remark 5: In (20), the optimization takes place over all

push-forward maps with the specified PDFs as boundary
conditions. Since there are infinite ways to morph a PDF
to another, finding a push-forward or transport map β (·) is
underdetermined unless we require that the push-forward is
optimal in some sense. Thus, (20) finds that particular push-
forward which entails minimum amount of work. Notice that
the infimum value for (20) is W 2, given by (19).

Remark 6: It is known [22] that the existence and unique-
ness of β? (·) are guaranteed. The optimal transport map β?

is also known as the Brenier map.
Theorem 5: (Brenier map for Gaussian to Gaussian

transport) [23], [24] The optimal transport map β? between
two Gaussian random vectors y ∼ N (ν, S), and ŷ ∼
N
(
ν̂, Ŝ

)
, is an affine transformation y = Γŷ + γ, where

Γ =
√
S
(√

S Ŝ
√
S
)− 1

2 √
S, (21)

γ = ν − ν̂. (22)
Remark 7: Theorem 5 implies that the minimum effort

way to morph a Gaussian PDF to another, is via a translation,
rotation and scaling. This is intuitive if we think about the
geometric way to morph a given ellipsoid to another such as
to entail minimum work.

V. GAUSSIAN MOMENT CLOSURE FOR STOCHASTIC
JUMP LINEAR SYSTEMS VIA OPTIMAL TRANSPORT

Now we will derive a Gaussian moment closure approxi-
mation for a discrete-time SJLS ({Ai}mi=1, {π (k)}k∈N0) with
the initial Gaussian PDF ς0 = N (µ0,Σ0). From Theorem 1,
we know that at time k, the SJLS joint state PDF ς (k) is an
MoG with mk component Gaussians. To perform Gaussian
moment closure, we seek an approximate model of the SJLS
that will generate state PDF ς̂(k) = N

(
µ̂(k), Σ̂(k)

)
such

that µ̂(k) = µ(k), and Σ̂(k) = Σ(k), where µ(k) and
Σ(k) are the mean and covariance of the SJLS at time
k, and are given by Corollary 2. Hence, over any time
interval [tk, tk+1), k ∈ N0, the approximated dynamical
system is required to transport between specified Gaussian
random vectors x̂(k) ∼ N

(
µ̂(k), Σ̂(k)

)
and x̂(k + 1) ∼

N
(
µ̂(k + 1), Σ̂(k + 1)

)
, where x̂ ∈ Rn denotes the state

vector of the approximated dynamics. In other words, we
seek the transport map βk such that x̂(k + 1) = βk (x̂(k)).

Theorem 6: (Gaussian moment closure approximation
for SJLS guaranteeing optimal transport is an ATV
system) For the Gaussian moment closure approximation
of a discrete-time SJLS ({Ai}mi=1, {π (k)}k∈N0) with initial
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Fig. 1. The schematic of the proposed Gaussian moment closure approximation for SJLS.

time

Fig. 2. Comparison of MJLS state PDF ς(k) with Gaussian moment closure PDF ς̂(k) from ATV approximated dynamics. Notice that ς(1), ς(2) and
ς(3) are MoG PDFs with 2, 4 and 8 Gaussian components, respectively. On the other hand, ς̂(1), ς̂(2) and ς̂(3) are all Gaussian PDFs, whose mean
vector and covariance matrix coincide with their respective MoG counterparts ς(1), ς(2) and ς(3), respectively.

Gaussian PDF ς0 = N (µ0,Σ0), the optimal transport map
x̂(k + 1) = β?k (x̂(k)) that solves

arginf
β(·)

E
[
‖ β (x̂(k))− x̂(k) ‖2`2(Rn)

]
, (23)

subject to N
(
µ̂(k + 1), Σ̂(k + 1)

)
= β ] N

(
µ̂(k), Σ̂(k)

)
,

is given by the ATV dynamics

x̂(k + 1) = Âkx̂(k) + âk, (24)

where

Âk =
√

Σk+1

(√
Σk+1 Σk

√
Σk+1

)− 1
2 √

Σk+1,(25)

âk = µk+1 − µk, (26)

and µ(k) and Σ(k) are given by (11) and (12). In
other words, β?k is characterized by the matrix-vector pair(
Âk, âk

)
.

Proof: This is a direct consequence of Theorem 5.

Remark 8: Theorem 6 implies that the discrete-time SJLS
({Ai}mi=1, {π (k)}k∈N0) and its ATV approximation (24),
with initial Gaussian PDF ς0 = N (µ0,Σ0), generate identi-
cal mean and covariances, by construction, i.e. µ̂(k) = µ(k),
and Σ̂(k) = Σ(k). Yet, their PDFs are not same since ς(k)
is an MoG with mk component Gaussians; and ς̂(k) is a
Gaussian with its mean and covariance same as that of the
SJLS MoG at that time.

Remark 9: The algorithmic construction of the ATV mo-
ment closure approximation is depicted in Fig. 1.

VI. NUMERICAL EXAMPLE

To illustrate the ideas presented so far, consider Gaus-
sian moment closure approximation for a discrete-time
Markov jump linear system (MJLS) with 2 modes, given
by
(
{Ai}2i=1, {π (k)}k∈N0

)
where the modal matrices are

A1 =

[
0.4 −0.5
0.4 0.6

]
, A2 =

[
0.3 0.4
−0.5 0.4

]
, (27)
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Fig. 3. Time history of the Wasserstein distance W between ς(k) and
ς̂(k), computed by solving an LP at each fixed k. We refer the readers to
[13], [14] for details of this computation.

and the occupation probability vector π (k) comes from a
discrete-time Markov chain π (k + 1) = π (k)P , where

the transition probability matrix P =

[
0.7 0.3
0.5 0.5

]
. For

these choice of parameters, it can be verified [25] that the
MJLS is mean-square stable. Taking the initial joint PDF
ς0 , ς(0) = N (µ0,Σ0) with µ0 = {1.5, 1.5}> and Σ0 =[
1 0
0 1

]
, and the initial occupation probability vector to be

π(0) = {0.5, 0.5}, we plot the MJLS state PDF ς(k) and
Gaussian moment closure PDF ς̂(k) from ATV approximated
dynamics, in Fig. 2. From this figure, it is evident that
the PDFs ς(k) and ς̂(k) may have significant mismatch
in shapes representing differing trajectory concentrations,
although their first two moments match.

In Fig. 3, we plot the Wasserstein distance W between
ς(k) and ς̂(k). This plot provides the quantitative evidence
of joint PDF mismatch between the true MJLS and its
Gaussian moment closure approximation. Time histories of
the components of the matched mean vector and covariance
matrix are plotted in Fig. 4 and 5, respectively.

VII. CONCLUSIONS

In this paper, we considered Gaussian moment closure
approximation for discrete-time stochastic jump linear sys-
tems. Using optimal transport ideas, we have constructed
an affine time-varying dynamical system that matches the
time-varying mean and covariance of the stochastic jump
linear system. One contribution of this paper is to construct
a non-jump moment closure approximation for a stochastic
jump system, which is new compared to existing literature.
Another contribution is to demonstrate that for stochastic
jump linear systems, matching first two moments need not
match PDF shapes. The example provided in this paper, is
hoped to have pedagogical value from this perspective.
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Fig. 4. Time history of the components of the matched mean vector for
the MJLS and its Gaussian moment closure approximation.
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Fig. 5. Time history of the components of the matched covariance matrix
for the MJLS and its Gaussian moment closure approximation.
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