Model Validation: A Probabilistic Formulation

Abhishek Halder and Raktim Bhattacharya

Department of Aerospace Engineering
Texas A\&M University
College Station, TX 77843-3141
$50^{\text {th }}$ IEEE CDC-ECC, Orlando, Florida December 12, 2011

Model validation problem: introduction

Given (i) a candidate model, and (ii) experimentally observed measurements of the physical system at times $\left\{t_{j}\right\}_{j=1}^{M}$, how well does the model replicate the experimental measurements?

Model validation problem: introduction

Given (i) a candidate model, and (ii) experimentally observed measurements of the physical system at times $\left\{t_{j}\right\}_{j=1}^{M}$, how well does the model replicate the experimental measurements?

- Model invalidation
[Smith and Doyle, 1992; Poolla et. al., 1994; Prajna, 2006]
"The best model of a cat is another cat, or better yet, the cat itself".
- Norbert Wiener
- Binary invalidation oracle

Q1. Is this overly conservative?
Q2. Can we compute the "degree of (in)validation"?

Model validation problem: state-of-the-art

Linear Model Validation

- Robust control framework
- Time domain
[Poolla et. al., 1994;
Chen and Wang, 1996]
- Frequency domain
[Smith and Doyle, 1992;
Steele and Vinnicombe, 2001;
Gevers et. al., 2003]
- Mixed domain [Xu et. al., 1999]
- Statistical setting
- Correlation analysis [Ljung and Guo, 1997]
- Bayesian conditioning [Lee and Poolla, 1996]

Nonlinear Model Validation

- Barrier certificate method [Prajna, 2006]
- Polynomial chaos method [Ghanem et. al., 2008]

Model validation problem: state-of-the-art

Linear Model Validation

- Robust control framework
- Time domain
[Poolla et. al., 1994;
Chen and Wang, 1996]
- Frequency domain
[Smith and Doyle, 1992;
Steele and Vinnicombe, 2001;
Gevers et. al., 2003]
- Mixed domain [Xu et. al., 1999]
- Statistical setting
- Correlation analysis [Ljung and Guo, 1997]
- Bayesian conditioning [Lee and Poolla, 1996]

Nonlinear Model Validation

- Barrier certificate method [Prajna, 2006]
- Polynomial chaos method [Ghanem et. al., 2008]
"For the general case of nonparametric (uncertainty) models, the situation is significantly more complicated"
- [Lee and Poolla, 1996]

Q3. Nonlinear model validation in the sense of nonparametric statistics (aleatoric uncertainty)?

Our approach: intuitive idea

(a)

(b)

What to compare for nonlinear systems?

- Our proposal: compare shapes of the output PDFs at $\left\{t_{j}\right\}_{j=1}^{M}$
- Why PDFs instead of
- trajectories?
- supports?
- moments?
- Why shapes?

Our approach: intuitive idea

What to compare for nonlinear systems?

- Our proposal: compare shapes of the output PDFs at $\left\{t_{j}\right\}_{j=1}^{M}$
- Why PDFs instead of
- trajectories?
- supports?
- moments?
- Why shapes?

(b)

Should work for

- any nonlinearity
- any uncertainty
- both discrete and continuous time
- computationally tractable
- validation certificate

Outline

- Introduction
- State-of-the-art
- Intuitive idea
- Problem formulation
- Uncertainty propagation
- Distributional comparison
- Construction of validation certificates
- Examples
- Conclusions

Problem formulation

State dynamics
Output dynamics

Uncertainty propagation

Continuous-time deterministic model

- Model

$$
\begin{aligned}
& \dot{x}=f(x, t, p) \Rightarrow \dot{\tilde{x}}=\widetilde{f}(\widetilde{x}, t), \\
& y=h(\widetilde{x}, t)
\end{aligned}
$$

- Liouville equation

$$
\begin{aligned}
& \frac{\partial \widehat{\xi}}{\partial t}=-\sum_{i=1}^{n_{s}} \frac{\partial}{\partial x_{i}}\left(\widehat{\xi} f_{i}\right), \\
& \widehat{\eta}(y, t)=\sum_{j=1}^{\nu} \frac{\widehat{\xi}\left(\widetilde{x}_{j}^{\star}, t\right)}{\left|\operatorname{det}\left(\mathcal{J}_{h}\left(\widetilde{x}_{j}^{\star}, t\right)\right)\right|}
\end{aligned}
$$

- Method-of-characteristics $\frac{d \widehat{\xi}}{d t}=-\widehat{\xi} \nabla \cdot f, \widehat{\xi}(\widetilde{x}(0), 0)=\xi_{0}$

Continuous-time stochastic model

- Model

$$
\begin{aligned}
& d \widetilde{x}=\widetilde{f}(\widetilde{x}, t) d t+g(\widetilde{x}, t) d W \\
& y=h(\widetilde{x}, t)+V
\end{aligned}
$$

- Fokker-Planck equation

$$
\frac{\partial \widehat{\xi}}{\partial t}=-\sum_{i=1}^{n_{s}} \frac{\partial}{\partial x_{i}}\left(\widehat{\xi} f_{i}\right)+
$$

$$
\sum_{i=1}^{n_{s}} \sum_{j=1}^{n_{s}} \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}\left(\left(g Q g^{T}\right)_{i j} \widehat{\xi}\right)
$$

$$
\widehat{\eta}(y, t)=
$$

$$
\left(\sum_{j=1}^{\nu} \frac{\widehat{\xi}\left(\widetilde{x}_{j}^{\star}, t\right)}{\left|\operatorname{det}\left(\mathcal{J}_{h}\left(\widetilde{x}_{j}^{\star}, t\right)\right)\right|}\right) * \phi_{V}
$$

- Karhunen-Loève + MOC $\dot{\tilde{x}}=\widetilde{f}(\widetilde{x}, t)+g(\widetilde{x}, t) \mathrm{KL}_{N}$ $\mathrm{KL} \mathrm{m}_{\infty} \stackrel{\mathrm{mss}}{=} \sqrt{2} \sum_{i=1}^{\infty} \zeta_{i}(\omega) \cos \left(\left(i-\frac{1}{2}\right) \frac{\pi t}{T}\right)$

Uncertainty propagation

Discrete-time stochastic model

- Model

$$
\begin{aligned}
& \widetilde{x}_{k+1}=\mathcal{S}\left(\widetilde{x}_{k}\right)+w_{k} \\
& \widetilde{x}_{k+1}=w_{k} \mathcal{S}\left(\widetilde{x}_{k}\right) \\
& y_{k}=h\left(\widetilde{x}_{k}\right)+v_{k}
\end{aligned}
$$

- Stochastic transfer operator $\widehat{\xi}_{k+1}=\mathcal{L}_{\text {add }} \widehat{\xi}_{k}=$

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}{ }^{n}} \widehat{\xi}_{k}(y) \phi_{w}\left(x_{k+1}-\mathcal{S}(y)\right) d y \\
& \widehat{\xi}_{k+1}=\mathcal{L}_{\text {mul }} \widehat{\xi}_{k}=
\end{aligned}
$$

$$
\int_{\mathbb{R}^{n_{s}}} \widehat{\xi}_{k}(y) \frac{1}{\mathcal{S}(y)} \phi_{w}\left(\frac{x_{k+1}}{\mathcal{S}(y)}\right) d y
$$

$$
\widehat{\eta}_{k}=\left(\sum_{j=1}^{\nu} \frac{\widehat{\xi}_{k}\left(\widetilde{x}_{j}^{\star}, t\right)}{\left|\operatorname{det}\left(\mathcal{J}_{h}\left(\widetilde{x}_{j}^{\star}, t\right)\right)\right|}\right) * \phi_{v}
$$

Distributional comparison: axiomatic approach

Candidates for validation distance

- Kullback-Leibler divergence $D_{K L}\left(\rho_{1} \| \rho_{2}\right):=\int_{\mathbb{R}^{d}} \rho_{1}(x) \log \left(\frac{\rho_{1}(x)}{\rho_{2}(x)}\right) d x$
- Symmetric KL divergence $D_{K L}^{\text {symm }}\left(\rho_{1} \| \rho_{2}\right):=\frac{1}{2}\left(D_{K L}\left(\rho_{1} \| \rho_{2}\right)+D_{K L}\left(\rho_{2} \| \rho_{1}\right)\right)$
- Wasserstein distance ${ }_{p} W_{q}\left(\mu_{1}, \mu_{2}\right):=\left[\inf _{\mu \in \mathcal{M}_{2}\left(\mu_{1}, \mu_{2}\right)} \int_{\Omega}\|\underline{x}-\underline{y}\|_{p}^{q} d \mu(\underline{x}, \underline{y})\right]^{1 / q}$

What we want	$D_{K L}$	$D_{K L}^{\text {symm }}$	W
$\geqslant 0$	\checkmark	\checkmark	\checkmark
Symmetry	\times	\checkmark	\checkmark
Triangle inequality	\times	\times	\checkmark
$\operatorname{supp}(\eta) \neq \operatorname{supp}(\widehat{\eta})$	\times	\times	\checkmark
$\operatorname{dim}(\operatorname{supp}(\eta)) \neq \operatorname{dim}(\operatorname{supp}(\widehat{\eta}))$	\times	\times	\checkmark
\#sample $(\eta) \neq \# \operatorname{sample}(\widehat{\eta})$	\times	\times	\checkmark
Convexity	\checkmark	\checkmark	\checkmark
Finite range	$[0, \infty)$	$[0, \infty)$	$[0, \operatorname{diam}(\Omega)]$

Distributional comparison: axiomatic approach

Wasserstein distance in validation context

- ${ }_{p} W_{q}\left(\mu_{1}, \mu_{2}\right)=\left(\inf _{\mu \in \mathcal{M}_{2}\left(\mu_{1}, \mu_{2}\right)} \mathbb{E}\left[\|\underline{x}-\underline{y}\|_{p}^{q}\right]\right)^{1 / q}$
- Minimum effort required to convert one shape to another
- We choose $p=q=2$, and denote ${ }_{2} W_{2}$ as W
- Parametric interpretation: W depends on shape difference but not on shape i.e. for $e_{r}:=\left\|m_{r}-\widehat{m}_{r}\right\|_{2}, W=W\left(\left\{e_{r}\right\}_{r \geqslant 1}\right)$

When can we write W in closed-form

- Single output case:

$$
{ }_{p} W_{q}^{q}(\eta, \widehat{\eta})=\int_{\mathbb{R}}\|F(x)-G(x)\|_{p}^{q} d x=\int_{0}^{1}\left\|F^{-1}(u)-G^{-1}(u)\right\|_{p}^{q} d u
$$

- Multivariate Normal case (comparing Linear Gaussian systems):

$$
\begin{aligned}
& W((A, C) ;(\widehat{A}, \widehat{C}))=W(\eta, \widehat{\eta})=W\left(\mathcal{N}\left(\mu_{1}, \Sigma_{1}\right), \mathcal{N}\left(\mu_{2}, \Sigma_{2}\right)\right)= \\
& \sqrt{\left\|\mu_{1}-\mu_{2}\right\|_{2}^{2}+\operatorname{tr}\left(\Sigma_{1}\right)+\operatorname{tr}\left(\Sigma_{2}\right)-2 \operatorname{tr}\left(\left(\sqrt{\Sigma_{1}} \Sigma_{2} \sqrt{\Sigma_{1}}\right)^{1 / 2}\right)}
\end{aligned}
$$

Distributional comparison: computing Wasserstein distance

W computation \rightsquigarrow Monge-Kantorovich optimal transportation plan

- At each time $\left\{t_{j}\right\}_{j=1}^{M}$, we have two sets of colored scattered data
- Construct complete, weighted, directed bipartite graph $K_{m, n}(U \cup V, E)$ with $\#(U)=m$ and $\#(V)=n$
- Assign edge weight $c_{i j}:=\left\|u_{i}-v_{j}\right\|_{\ell_{2}}^{2}, u_{i} \in U, v_{j} \in V$
- minimize $\sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} \varphi_{i j} \quad$ subject to

$$
\begin{align*}
\sum_{j=1}^{n} \varphi_{i j}=\alpha_{i}, & \forall u_{i} \in U, \tag{C1}\\
\sum_{i=1}^{m} \varphi_{i j}=\beta_{j}, & \forall v_{j} \in V \tag{C2}\\
\varphi_{i j} \geqslant 0, & \forall\left(u_{i}, v_{j}\right) \in U \times V \tag{C3}
\end{align*}
$$

- Necessary feasibility condition: $\sum_{i=1}^{m} \alpha_{i}=\sum_{j=1}^{n} \beta_{j}$

Distributional comparison: computing Wasserstein distance

Sample complexity

- Rate-of-convergence of empirical Wasserstein estimate $\mathbb{P}\left(\left|W\left(\eta_{m}, \widehat{\eta}_{n}\right)-W(\eta, \widehat{\eta})\right|>\epsilon\right) \leqslant K_{1} \exp \left(-\frac{m \epsilon^{2}}{32 C_{1}}\right)+K_{2} \exp \left(-\frac{n \epsilon^{2}}{32 C_{2}}\right)$

Runtime complexity

- An LP with $m n$ unknowns and $(m+n+m n)$ constraints
- For $m=n$, runtime is $\mathcal{O}\left(d n^{2.5} \log n\right)$

Storage complexity

- For $m=n$, constraint is a binary matrix of size $2 n \times n^{2}$
- Each row has n ones. Total \# of ones $=2 n^{2}$
- At a given snapshot, sparse storage complexity is $2 n(3 n+d+1)=\mathcal{O}\left(n^{2}\right)$
- Non-sparse storage complexity is $2 n\left(n^{2}+d+1\right)=\mathcal{O}\left(n^{3}\right)$

Construction of validation certificates: PRVC

How robust is the inference?

- Set of admissible initial densities: $\Psi:=\left\{\xi_{0}^{(1)}, \xi_{0}^{(2)}, \ldots, \xi_{0}^{(N)}\right\}$
- At time step k, validation probability is $p\left(\gamma_{k}\right):=\mathbb{P}\left(W\left(\eta_{k}, \widehat{\eta}_{k}\right) \leqslant \gamma_{k}\right)$
- Let $V_{k}^{i}:=\left\{\widehat{\eta}_{k}^{(i)}(y): W\left(\eta_{k}^{i}, \widehat{\eta}_{k}^{i}\right) \leqslant \gamma_{k}\right\}$
- Empirical validation probability is $\widehat{p}_{N}\left(\gamma_{k}\right):=\frac{1}{N} \sum_{1}^{N} \mathbf{1}_{V_{k}^{i}}$
- (Chernoff bound) For any $\epsilon, \delta \in(0,1)$, if $N \geqslant N_{\mathrm{ch}}:=\frac{1}{2 \epsilon^{2}} \log \frac{2}{\delta}$, then $\mathbb{P}\left(\left|p\left(\gamma_{k}\right)-\widehat{p}\left(\gamma_{k}\right)\right|<\epsilon\right)>1-\delta$

Construction of validation certificates: PRVC

Algorithm 1 Construct PRVC

Require: $\epsilon, \delta \in(0,1)$, n, experimental data $\left\{\eta_{k}(y)\right\}_{k=1}^{M}$, model, tolerance vector $\left\{\gamma_{k}\right\}_{k=1}^{M}$
1: $N \leftarrow N_{\mathrm{ch}}(\epsilon, \delta)$
2: Draw N random functions $\xi_{0}^{(1)}(\widetilde{x}), \xi_{0}^{(2)}(\widetilde{x}), \ldots, \xi_{0}^{(N)}(\widetilde{x})$

$$
\text { for } k=1 \text { to } T \text { do } \quad \triangleright \text { Index for time step }
$$

4: \quad for $i=1$ to N do \triangleright Index for initial density for $j=1$ to ν do \triangleright Index for samples in extended state space, drawn from $\xi_{0}^{(i)}(\widetilde{x})$ Propagate states using dynamics Propagate measurements
end for
Propagate state PDF
Compute instantaneous output PDF
Compute ${ }_{2} W_{2}\left(\eta_{k}^{(i)}(y), \widehat{\eta}_{k}^{(i)}(y)\right) \quad \triangleright$ Distributional comparison by solving LP
sum $\leftarrow 0$
if ${ }_{2} W_{2}\left(\eta_{k}^{(i)}(y), \widehat{\eta}_{k}^{(i)}(y)\right) \leqslant \gamma_{k}$ then sum \leftarrow sum +1
else do nothing end if
end for

$$
\widehat{p}_{N}\left(\gamma_{k}\right) \leftarrow \frac{\text { sum }}{N}
$$

\triangleright Construct PRVC vector of length $M \times 1$
20: end for

Example: Continuous-time model

- Truth: $\ddot{x}=-a x-b \sin 2 x-c \dot{x}$,

$$
a=0.1, b=0.5, c=1 .
$$

- Five equilibria

- Model: Linearization about origin
- $\xi_{0}=\mathcal{U}([-4,6] \times[-4,6])$
- We plot time history of
$\bar{W}:=\frac{W\left(\eta_{k}, \widehat{\eta}_{k}\right)}{\operatorname{diam}\left(\Omega_{k}\right)} \in[0,1]$

Example: Continuous-time model: \bar{W} vs. t

Example: Continuous-time model: \bar{W} vs. t

Example: Continuous-time model: \bar{W} vs. t

- $\xi_{0}^{(i)}=\mathcal{N}\left(0, \sigma_{0 i}^{2} \mathbf{I}\right)$
- $\mathrm{PRVC}_{25 \times 1}=[1,1,1, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{7}{8}, \underbrace{\frac{3}{4}, \ldots, \frac{3}{4}}_{18 \text { times }}]^{T}$

Conclusions

- Unifying framework for nonlinear model validation
- Transport-theoretic Wasserstein distance as (in)validation measure
- Computable probabilistic validation certificate
- Can guide to model refinement

