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Abstract— This paper presents a new nonlinear filtering
algorithm that is shown to outperform state-of-the-art particle
filters with resampling. Starting from the Itô stochastic differ-
ential equation, the proposed algorithm harnesses Karhunen-
Loéve expansion to derive an approximate non-autonomous
dynamical system, for which transfer operator based density
computation can be performed in exact arithmetic. It is proved
that the algorithm is asymptotically consistent in mean-square
sense. Numerical results demonstrate that explicitly accounting
prior dynamics entail significant performance improvement for
nonlinear non-Gaussian estimation problems with infrequent
measurement updates, as compared to the performance of
particle filters.

I. INTRODUCTION

On a probability space (Ω,F ,P) with filtration {Ft}t>0,
consider the nonlinear estimation problem associated with
the Itô stochastic differential equations (SDEs)

dx (t) = f (x (t) , t, δ) dt+ dW (ω, t) , (1)
dy (t) = h (x (t) , t, δ) dt+ dV (ω, t) , (2)

where at time instance t, the state vector x (t) ∈ Rn, and the
measurement vector y (t) ∈ Rm. δ ∈ Rp is the parameter
vector, and W (ω, t) : Ω× R+ 7→ Rn, V (ω, t) : Ω× R+ 7→
Rm are mutually independent Wiener processes denoting
process and measurement noise, respectively. Further, ω ∈ Ω,
and the functions f (.) and h (.) represent the dynamics and
measurement models, respectively.

State and parameter estimation for nonlinear systems
such as above, are commonly done using sequential Monte
Carlo (SMC) methods, particle filter being the most popu-
lar amongst them [1]. These algorithms follow traditional
prediction-update framework where the prior is predicted
using state dynamics, followed by a Bayesian update using
measurement model, resulting the posterior. It is well known
[2] that these methods require large number of samples
for convergence, leading to higher computational cost. This
problem is usually tackled by combining particle filters with
resampling [3], [4], commonly known as bootstrap filters
[5]. However, resampling may introduce loss of diversity
amongst particles [6]. Several other methods like regularized
particle filter [7], and filters with Markov Chain Monte Carlo
(MCMC) move step [8], have been proposed to enhance
sample diversity. At the same time, even with resampling,
due to the simulation based nature of these filters, the
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sample size scales exponentially with state dimension [9].
To circumvent this problem, particle filters based on Rao-
Blackwellization [10] have been proposed to partially solve
the estimation problem analytically. However, its application
remains limited to systems where the required partition of
the state space is possible.

The main idea of this paper is to recognize the fact that
much of the computational burden of particle filter, stems
from the Monte Carlo approximation of the prior. Lack of
statistically consistent methods for high dimensional uncer-
tainty propagation, has stymied the accurate computation of
prior density. In the previous work, the authors developed
[11] Perron-Frobenius (PF) operator [12] based methods
for numerically efficient uncertainty propagation schemes
for nonlinear systems with parametric and initial condition
uncertainties. This was achieved by solving the charac-
teristic ordinary differential equation (ODE) corresponding
to the Liouville partial differential equation (PDE), along
the trajectories in the extended state space z := [x δ]>.
In the estimation setting, it was observed [13] that prior
probability density function (PDF) computed via PF operator,
followed by Bayesian update, outperformed particle filter in
the absence of process noise.

In the presence of process noise, the transport PDE as-
sociated with forward Kolmogorov operator is the Fokker-
Planck-Kolmogorov (FPK) equation [14], which being a
second order PDE, does not enjoy method-of-characteristics
(MOC) based ODE formulation. Function approximation
techniques for solving FPK eqn. usually suffer from the
“curse of dimensionality” [15]. This severely limits the ac-
curacy of prior computation, and hence that of the nonlinear
filters. An alternative approach was proposed recently by the
authors [16], where instead of directly approximating the
prior, the process noise was approximated by a finite-term
Karhunen-Loéve (KL) expansion resulting an approximate
state dynamics. Next, the MOC based PF operator compu-
tation was performed on this approximate non-autonomous
dynamical system in exact arithmetic. [16] provided strong
numerical evidence that such two step “first KL, then PF”
(henceforth KLPF) algorithm is asymptotically consistent in
distribution. However, two issues remained unsettled.

1) In [16], the distributional consistency was algorithmi-
cally verified. A rigorous proof for convergence was
lacking. Also, it was not clear whether the distribu-
tional convergence is only sufficient, i.e. whether a
stronger notion of convergence holds true.

2) No detailed numerical investigation was performed to
assess the filtering performance improvement resulting
from KLPF algorithm, vis-a-vis with particle filter.



This paper has two key contributions. First, we prove
that solution of the KL approximated dynamics, converges
to that of the true Itô SDE in mean-square (m.s.) sense.
This is indeed stronger than the distributional convergence of
[16]. Further, the m.s. convergence is shown to be necessary
and sufficient. Second, we provide strong numerical results
showing that the proposed algorithm achieves superior esti-
mation accuracy than the particle filter with resampling. The
proposed nonlinear estimation algorithm, henceforth referred
as KLPF filter, is shown to achieve better performance with
much lesser samples than particle filter.

The rest of this paper is structured as follows. Section II
describes the KLPF formulation for computing prior PDF
and provides m.s. convergence guarantees. The nonlinear
filtering algorithm is introduced in Section III. Section IV
contains numerical results for both linear Gaussian and
nonlinear non-Gaussian estimation problems. Section V con-
cludes the paper.

Notation

Most notations are standard. In denotes the n-by-n iden-
tity matrix, and diag (·) denotes the diagonal matrix. The
symbol N (µ,Σ) denotes joint Gaussian PDF with mean µ
and covariance Σ. N stands for the set of natural numbers,
tr (·) denotes the trace of a matrix, and div(·) denotes the
divergence operator. The symbol δij represents Kronecker
delta.

II. APPROXIMATING PRIOR DYNAMICS

A. KLPF Formulation

Given the Itô SDE (1), we write an approximate dynamical
system corresponding to its Langevin ODE form for the jth

state:

ẋ
(j)
N = f (j) (xN (t), t, δ) +

N∑
i=1

√
Λi ζ

(j)
i (ω) ei (t) , (3)

where j = 1, 2, . . . , n. Further, {Λi, ei (t)}∞i=1 is the se-
quence of eigenvalue-eigenfunction pairs of the covariance
function C (t1, t2) associated with the additive stationary
process noise, and ζi (ω) are i.i.d. random variables drawn
from the distribution of the noise stochastic process. For
example, if W (ω, t) is Wiener process with C (t1, t2) =
σ2 (t1 ∧ t2), t1, t2 ∈ [0, T ], then {Λi, ei (t)}∞i=1 is the eigen-
pair sequence for Gaussian white noise η (ω, t), and ζi (ω) ∼
N
(
0, σ2

)
. In effect, the second term in the RHS of (3), is

the N -term KL expansion for η (ω, t). We affix subscript
N to the states (xN (t)) of the approximate dynamics (3), to
distinguish them from the sample paths (x(t)) of the original
SDE (1).

Next, we augment (3) with the characteristic ODE

ϕ̇− = −div
(
f̃
)
ϕ−, (4)

where f̃ denotes the RHS nonlinearity of (3), and
ϕ− (xN (t), t, δ) denotes the prior at time t, supported over
the extended state space [xN δ]> ∈ Rn+p. Consequently,
(4) computes the evolution of joint prior PDF along the

Process noise

Stochastic evolution equation 

Non-parametric Parametric

FPK PDE Liouville PDE

Perron-Frobenius
(PF) operator

MOC

Forward Kolmogorov
operator

KL

Function 
approximation

Fig. 1. Summary of the KLPF formulation.

characteristic curves xN (t). Notice that we do not assume
the process noise to be Gaussian. As long as the additive
noise has finite second moment, we can write down the ap-
proximate dynamical system (3) via the noise KL expansion
(Table I). The overall formulation is summarized in Fig. 1.

It is well-known [19] that as N →∞, the finite-term noise

KL expansion
N∑
i=1

√
Λi ζ

(j)
i (ω) ei (t) converges uniformly

to the unstructured noise η (ω, t) in m.s. sense. However,
to justify our formulation, it remains to answer whether
xN (t) converges to that of x (t), and in what sense. The
following sub-section answers this issue. For notational ease,
we disregard uncertainty on parameter δ, without loss of
generality. It is straightforward to verify that the following
results generalize to extended state space.

B. Quality of Approximation

1) Asymptotic convergence: In [16], it was verified
through simulation that as N → ∞, xN (t) → x(t) in
distribution, i.e. ϕ− (xN (t), t)→ ϕ− (x(t), t), ∀t > 0. Here
we prove the stronger result that xN (t)→ x(t) in m.s. sense.

Theorem 1: Let x (ω, t) be the solution of the nonlinear
Itô SDE

dx(t) = f(x(t), t)dt+ dW(ω, t), (5a)

⇒ d

dt
x (t) = f (x, t) + η(ω, t), (5b)

where dW (ω, t) = η (ω, t) dt, and f : Rn × [0, T ] → Rn
satisfies the following:

1) non-explosion condition: ∃ D ≥ 0, s.t. |f (x, t)| <
D(1 + |x|) where x ∈ Rn, t ∈ [0, T ];

2) Lipschitz condition: ∃ C ≥ 0, s.t.
|f (x, t)− f (x̆, t)| < C |x− x̆|, where x, x̆ ∈ Rn,
t ∈ [0, T ].



TABLE I
NOISE KL EXPANSION: EXAMPLES

Noise W(ω, t) in SDE C (t1, t2) for W(ω, t) White noise η(ω, t) in Langevin ODE KL expansion of η (ω, t), 0 < t 6 T

Wiener process σ2 (t1 ∧ t2) Gaussian white noise
√

2

T

∞∑
i=1

ζi (ω) cos

((
i−

1

2

)
πt

T

)

Compound Poisson process λσ2 (t1 ∧ t2) + (λµ)2t1t2 Poisson white noise (Appendix A)
∞∑
i=1

ζi (ω)

2
βi

√
Λi√

2T − βi sin 2T
βi

cos

(
t

βi

)

Let xN (t) be solution of the ODE

d

dt
xN (t) = f (xN (t), t) + ηN (ω, t), (6)

where ηN (ω, t) is the N -term truncated orthonormal expan-

sion of η(ω, t), and E

[∫ T

0

ηN (ω, t)dt

]
<∞. Then,

lim
N→∞

E|x (t)− xN (t)|2 = 0, (7)

iff xN (t) is the KL expansion of x (t).
Theorem 1 states conditions upon the solutions of approx-

imated and true systems for m.s. convergence to hold, under
certain assumptions on the nonlinearities. No condition has
been imposed yet on the initial states, which we investigate
next.

Theorem 2: Given the stochastic dynamical system

dx(t) = f(x(t), t)dt+ dW (ω, t) , (8)

and its corresponding N -term KL approximation given by

dx
(j)
N (t) = f (j)(xN (t), t) dt+

N∑
i=1

√
Λiζ

(j)
i (ω)ėi(t) dt, (9)

where, lim
N→∞

E

∣∣∣∣∣W(j) (ω, t)−
N∑
i=1

√
Λiζ

(j)
i (ω)ei(t)

∣∣∣∣∣
2

= 0,

∀ j = 1, 2, . . . , n. Then, lim
N→∞

E|x(t)− xN (t)|2 = 0, if
x(0) = xN (0).

Corollary 3: Suppose xN (0) 6= x (0). If xN (0) is the
generalized polynomial chaos (gPC) expansion of x(0), then
lim
N→∞

E|x(t)− xN (t)|2 = 0.

III. KLPF FILTER

Algorithm 1 Continuous-discrete KLPF filter (‘time of measure-
ment’ index: k = 1, . . . , τ ; sample index: i = 1, . . . , ν)
Require: {yk}τk=1 and ϕ0 . Measurements & initial joint state PDF
1: {x0,i}νi=1 ← MCMC({ϕ0,i}νi=1) . Initial sampling
2: for k = 0 to τ − 1 do
3: {ϕ−k+1,i, x

−
k+1,i}

ν
i=1 ← Propagate{ϕ+

k,i, x
+
k,i}

ν
i=1 . MOC (4)

4: {%(k+1|k+1),i}νi=1 ← (2π)−
m
2 |R|−

1
2 exp[− 1

2
(yk+1 −

h(x−k+1,i, tk))>R−1(yk+1 − h(x−k+1,i, tk))] . Likelihood function
5: {ϕ+

k+1,i}
ν
i=1 ← Update{ϕ−k+1,i, %(k+1|k+1),i}νi=1 . Bayes’

6: x̂k+1 ←
∑ν
i=1 x

−
k+1,i ϕ

+
k+1,i . State estimate at k + 1th time

7: end for . Repeat for next measurement

Fig. 2. This plot illustrates the asymptotic convergence results developed
in Section II.B.1 for Van der Pol oscillator ẍ(t) =

(
1− x2(t)

)
ẋ(t) −

x(t) + η(ω, t), with η(ω, t) being Gaussian white noise. Starting from the
same initial condition (1, 1), denoted by the filled circle, the dashed, and
solid curves show the deterministic (zero noise), and stochastic (SDE sample
path with zero-mean additive Gaussian noise of variance 0.25) trajectories,
respectively. The dash-dotted curve is the trajectory of the KL-approximated
system with N = 100 terms, starting from the same initial condition, with
process noise same as that of the SDE path. As N increases, the dash-dotted
curve converges to the solid curve in mean-square sense.

IV. NUMERICAL RESULTS

A. Comparison of KLPF and Particle Filter Posteriors

In this subsection, we consider two examples for which
the estimation problem is exactly solvable and hence the
true posterior is known. To demonstrate the performance
improvement achieved by KLPF compared to particle filter,
we must show that the KLPF posterior is closer to the true
posterior, than particle filter. In other words, the “distance”
between KLPF posterior and true posterior, must remain
smaller than the “distance” between particle filter posterior
and true posterior, for all times. The notion of distributional
distance used here, is the quadratic Wasserstein metric of
order two (denoted as 2W2), that measures the difference
in shapes between the two statistical distributions under
comparison.

Definition 1: (Wasserstein distance) Consider a metric
space (M, `p) and let x, x̃ ∈ M . For q ∈ N, let Pq (M)
denote the collection of all probability measures µ supported
on M , which have finite qth moment. Then the `p Wasserstein
distance of order q, denoted as pWq , between two probability



measures ς1, ς2 ∈ Pq (M), is defined as

pWq (ς1, ς2) :=
(

inf
µ∈M(ς1,ς2)

∫
M×M

‖ x− x̃ ‖q`p dµ (x, x̃)
) 1

q

where M (ς1, ς2) is the set of all measures supported on the
product space M × M , with first marginal ς1 and second
marginal ς2.

Remark 1: Intuitively, Wasserstein distance quantifies the
minimum amount of work required to convert one distribu-
tional shape to the other, and can be interpreted as the cost
for Monge-Kantorovich optimal transportation plan [20]. We
set p = q = 2 (see [21] for details) for comparing posteriors,
and for notational ease, henceforth denote 2W2 as W . For
absolutely continuous measures ς1 and ς2, with PDFs ϕ1 and
ϕ2, we can write W (ϕ1, ϕ2) in lieu of W (ς1, ς2).

Remark 2: For multivariate Gaussians, W admits [22] a
closed form expression, given by

W (N (µ1,Σ1) ,N (µ2,Σ2)) =

(
‖ µ1 − µ2 ‖22 + tr (Σ1 + Σ2)

− 2 tr
[√

Σ1Σ2

√
Σ1

]1/2)1/2

.

(10)

In general, computation of W from definition 1, necessitates
solving a linear program (LP). We refer the readers to [23]
for details of this computation.

1) Case I. Kalman filter: Let us consider the continuous-
discrete Kalman filter with continuous-time state dynamics

ẋ (t) = −0.05 I2 x (t) + [1 1]> η (t) , (11)

and discrete-time measurement model

yk = [1 1] xk + vk, k ∈ N, (12)

where η (t) and vk are independent zero mean Gaussian
white noise processes, with variances Q = 1/8 and R = 1/4,
respectively. We assume the initial joint state PDF to be
N
(

[1 1]> , diag (1, 1)
)

.
From this initial state PDF, we draw 100 sample sets, each

with sample size 500. Then using (10), we compute two
Wasserstein time histories: W

(
ϕ+

Kalman (t) , ϕ+
Particle (t)

)
and

W
(
ϕ+

Kalman (t) , ϕ+
KLPF (t)

)
, where ϕ+

Kalman (t), ϕ+
Particle (t) and

ϕ+
KLPF (t) denote posteriors at time t, obtained from Kalman

filter, particle filter and KLPF filter, respectively. The means
and standard deviations of these time histories are shown
in Fig. 3. This plot shows that the KLPF filter posterior
remains indeed closer to the Kalman posterior, compared to
the particle filter posterior.

2) Case II. Benes̆ filter: Benes̆ filter is one of the few
[24] nonlinear filters which admit a known finite-dimensional
solution of the nonlinear estimation problem. Here, the
nonlinear drift in state dynamics, is assumed to satisfy a
Riccati differential equation [25] and the measurement model
is taken to be affine in states. We consider the continuous-
continuous scalar Benes̆ filtering problem of the form:

dx (t) =
κex − e−x

κex + e−x
dt+ dW (ω, t) , (13)

dy (t) = x (t) dt+ dV (ω, t) , (14)

Fig. 3. Plot of means and standard deviations of the Wasserstein distances
of the posteriors from KLPF filter (solid line) and the particle filter
(hyphenated line) for the Kalman filter. The vertical lines about the means
represent ±1σ limits.

with κ = 0.5 and deterministic initial condition x0. The
process and measurement noise densities are N (0, Q) and
N (0, R) respectively, with Q = 1, R = 10. It can be shown
[26] that the drift nonlinearity satisfies the necessary Riccati
condition and the resulting solution [27] is given by the
normalized posterior density

ϕ (x (t) |Yt) =

√
coth(t)

2π

(
κex + e−x

κeIt(y(ω)) + e−It(y(ω))

)
exp

(
− 1

2Γ (t)
)
, (15)

where Yt is the history (filtration) till time t, and

It (y (ω)) := sech(t)
[
x0 +

∫ t

0

sinh(s)dys (ω)
]
, (16)

Γ (t) := tanh(t) + coth(t) (x− It (y (ω)))2
.(17)

Notice that for this nonlinear non-Gaussian estimation prob-
lem, unlike Kalman filter case, we can not write the Wasser-
stein distance between the true posterior (15) and particle
filter/KLPF posterior, as an analytical expression in terms of
the respective sufficient statistics. Thus, in order to compute
the Wasserstein time history, we resort to the LP formulation
[23]. At each time, we sample (15) using the Metropolis-
Hastings MCMC technique [28], and solve the LP between
the sampled true Benes̆ posterior and particle filter/KLPF
posterior, to result the normalized Wasserstein trajectories
shown in Fig. 4. Like the Kalman filter case, as time
progresses, KLPF posterior gets closer, compared to particle
filter, to true Benes̆ posterior.

B. Application to Hypersonic Entry

The KLPF filtering technique is applied next to estimate
states of a hypersonic spacecraft entering the atmosphere of
Mars. The entry dynamics is given by the “noisy” version of
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TABLE II
PARAMETERS IN EQN. (18)

Description of parameters Values with dimensions
Mean equatorial radius of Mars Rm = 3397× 103 m
Acceleration due to gravity for Mars g = 3.71 m/s2

Ballistic coefficient of the vehicle Bc = 72.8 kg/m2

Lift-to-drag ratio of the vehicle L
D

= 0.3
Nominal density at the surface of Mars ρ0 = 0.0019 kg/m3

Scale heights for density computation h1 = 9.8 km, h2 = 20 km
Escape velocity of Mars vc = 5.027 km/s
Rotational angular velocity of Mars Ω = 7.0882× 10−5 rad/s
Bank angle of the vehicle φ = 0o

Vinh’s equation [29]:

ṙ =v sin γ + ηr, (18a)

θ̇ =
v cos γ sin ξ

r
+ ηθ, (18b)

λ̇ =
v cos γ cos ξ

r cos θ
+ ηλ, (18c)

v̇ =−
ρv2

2Bc
− g sin γ − Ω

2
r cos θ(sin γ cos θ − cos γ sin θ sin ξ) + ηv ,

(18d)

γ̇ =
(v
r
−
g

v

)
cosγ +

ρ

2Bc

(
L

D

)
v cosφ+ 2Ω cos θ cos ξ+

Ω
2
r

v
cos θ(cos γ cos θ + sin γ sin θ sin ξ) + ηγ , (18e)

ξ̇ =
ρ

2Bc

(
L

D

)
v sinφ−

v

r
cos γ cos ξ tan θ + 2Ω(tan γ cos θ sin ξ−

sin θ)−
Ω

2
r

v cos γ
sin θ cos θ cos ξ + ηξ. (18f)

The 6× 1 state vector comprises of the distance (in Km) of
the center-of-mass of the spacecraft from Mars center (r),
Mars-centric latitude (θ) and longitude (λ), total velocity
(v) (in Km/s), flight path angle (γ) and azimuth angle (ξ).
The variation in Mars atmospheric density (ρ in Kg/m3)
is given by the model ρ = ρ0 exp ((h2 − h) /h1), where
h := (r −Rm), denotes the altitude (in Km) measured from
the mean Martian surface. The parameters in state eqn. (18)
are described in Table II with their respective dimensions.
The measurement model is given by

y = [q̃, H, γ, θ, λ, ξ]> + ϑ, (19)
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Fig. 5. Plots for
√
σ2
xi
− CRLBxi for states x1, . . . , x6. The solid line

represents KLPF filter (3000 particles). The hyphenated, hyphen-dotted and
solid-asterixed lines represent particle filters with 3000, 20,000 and 50,000
particles, respectively.

where the dynamic pressure q̃ = 1
2ρv

2, and the heating
rate H = Kρ

1
2 v3.15, with K = 4.47228 × 10−9 being the

scaled material heating coefficient [30]. Each component of
the process noise vector η := (ηr, ηθ, ηλ, ηv, ηγ , ηξ)

> is a
zero mean mutually uncorrelated Gaussian white noise, with
appropriate units. Same holds true for the 6×1 measurement
noise vector ϑ, which is also uncorrelated with η. The
process and measurement noise covariances are taken as
Q = 3.6× 10−5I6 and R = 3.6× 10−3I6, respectively.

Starting with an initial state PDF N (µ0,Σ0), with
µ0 = [Rm + 54 Km,−60o, 30o, 2.4 Km/s,−9o, 0.0573o]>

and Σ0 = diag (5.4 Km, 3o, 3o, 240 m/s, 0.9o, 0.0057o),
both particle filter and KLPF filtering schemes are applied
to estimate the state vector x = [r, θ, λ, v, γ, ξ]>. Fig. 5
shows the plots for square root of the difference between
the respective variance (σxi ) and Cramer-Rao lower bound
(CRLBxi

) for each state xi. The performance of KLPF filter
with sample size 3000, is compared with the same for particle
filters with 3000, 20,000 and 50,000 particles. It can be
observed that

√
σ2
xi
− CRLBxi

for KLPF filter is lower than
that of the particle filters for all the states. This demonstrates
that the solution obtained from proposed estimation scheme
remains closer to the true minimum variance solution than
that obtained from particle filters.

Next, we plot the final posterior univariate and bivariate
marginals obtained from the two filtering methods, computed
using the algorithm given in [11]. Fig. 6 and 7 respectively
compare the univariate and bivariate marginals, obtained
from KLPF estimator and particle filter, both with 3000
samples. It can be observed that the KLPF estimator is able to
reduce variance and capture localization of uncertainty better
than the particle filter, with same number of samples. This
remains true even when the performance of KLPF estimator
with 3000 samples, is compared with a particle filter with
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Fig. 6. Comparison of final posterior univariate marginal PDFs for
all states, obtained from KLPF estimator (solid line) and particle filter
(hyphenated line) with 3000 particles.

50,000 samples (Fig. 8 and 9).

V. CONCLUSIONS

A new nonlinear filtering algorithm is presented in this
paper, that is shown to outperform the estimation accuracy
of particle filters with even higher number of samples. This is
achieved by explicitly taking the prior dynamics into account.
Contrary to the traditional “top-down” approach of numer-
ically solving the FPK PDE via function approximation, a
“bottom up” approach for prior computation is developed by
first approximating the problem via spectral parametrization
of the noise, and then solving that approximate problem
in exact arithmetic via MOC computation of the transfer
operator. The resulting algorithm, dubbed as KLPF filter, is
a non-particle filter [32], and is amenable to both Gaussian
and non-Gaussian process noise. The estimation performance
improvement over particle filter, is demonstrated through
numerical simulations.

APPENDIX

A. KL Expansion of Poisson White Noise
We first obtain the KL expansion of compound Poisson

process [17] with covariance kernel given in Table I. This
requires us to solve the associated Fredholm integral equation
of second kind, detailed in the supplementary document [18].
Next, we take the formal derivative (in m.s. sense) of the KL
expansion of compound Poisson process, to arrive at the KL
expansion of Poisson white noise, given in the second row,
right-most column in Table I. Here, ζi(ω) are i.i.d random

variables from N (0, 1), βi ,
√

Λi

λσ2 , ∀ i ∈ N, and Λi > 0
solves

tan

(
σT

√
λ

Λi

)
=

[
1 +

1

λT

(
σ

µ

)2
](

σT

√
λ

Λi

)
, (20)

where the parameters λ, σ, µ, T > 0.
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Fig. 7. Plots for the final posterior bivariate marginal PDFs obtained from
KLPF estimator and particle filter with 3000 particles. The darker (lighter)
regions represent lower (higher) PDF values.

B. Proof for Theorem 1

(⇐) Given (7) holds, we need to show xN (ω, t) is the KL
expansion of x (ω, t). Let {ψm(t)}∞m=1 be any orthonormal
basis. Then x (ω, t) can be written as a convergent sum in

L2 (Ω,F ,P), i.e. x (ω, t) =
∞∑
m=1

bmcm(ω)ψm(t).

Let xN (ω, t) be an N -term m.s. convergent approx-
imation of x (ω, t), and the resulting truncation error

equals EN (ω, t) =
∞∑

m=N+1

bmcm(ω)ψm(t). Further, pro-

jecting x (ω, t) onto the basis ψm(t) results cm(ω) =
1
bm

∫ T

0

x(ω, t)ψm(t)dt. For convergence, the basis ψm(t)

should minimize
∫ T

0

E [EN (ω, t)] dt subject to the orthonor-

mality constraint
∫ T

0

φm(t)φk(t)dt = δmk, ∀m, k ∈ N.

Introducing b2m as Lagrange multipliers and using the
above derived formula for cm (ω), the first order optimality
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Fig. 8. Final posterior univariate marginal PDF for all states obtained
from KLPF estimator (solid line) with 3000 particles and particle filter
(hyphenated line) with 50,000 particles.

condition yields
∫ T

0

Cxx (t1, t2)ψm (t1) dt1 = b2mψm (t2),

which is the Fredholm integral equation of second kind for
the covariance function of random process x (ω, t). Hence
{b2m, ψm(t)}∞m=1 is the eigenvalue-eigenfunction sequence
for Cxx(t1, t2). Thus, the original expansion is indeed a KL
expansion. �
(⇒) To proceed, we need the following uniqueness condi-
tions on (i) solution of (5a), and (ii) KL expansion of a
random process.

Proposition 1 ( [33], Chap. 5): Given, the non-explosion
condition and the Lipschitz condition are satisfied for f (·, ·)
in (5a). Let Z be a random variable, independent of the σ-
algebra generated by η(ω, t), t ≥ 0, and E

[
|Z|2

]
<∞. Then

the SDE (5a) where t ∈ [0, T ], X(ω, 0) = Z, has a unique
t-continuous solution x(ω, t) adapted to the filtration FZ

t

generated by Z, and E

[∫ T

0

|x(ω, t)|2dt

]
<∞.

Proposition 2 ( [31], Chap. 2): The Karhunen-Loève ex-
pansion of a random process x(ω, t), given by x(ω, t) =
∞∑
i=1

√
Λiζi(ω)ei(t), is unique.

Let us assume that x̆N (ω, t) is the KL expansion of x(ω, t).
Furthermore, if possible, assume that x̆N (ω, t) 6= xN (ω, t),
which is the solution of (6) and converges to the solution of
(5a) in m.s. sense.

Notice that (6) has unique solution as RHS of (6) sat-
isfies Lipschitz condition. This can be proved as follows:
for RHS of (6) to satisfy Lipschitz condition, we must
have |f(x, t) + ηN (ω, t)− f(x̆, t)− ηN (ω, t)| ≤ C |x− x̆|,
which is true since f(·, ·) itself satisfies Lipschitz condition.
Hence (5a) has unique solution that admits a unique KL
expansion. Also according to our assumption, the solution
of (6) converges to the solution of (5a) in m.s. sense. This
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Fig. 9. Plots for the final posterior bivariate marginal PDFs obtained from
KLPF estimator with 3000 particles and particle filter with 50,000 particles.
The darker (lighter) regions represent lower (higher) PDF values.

contradicts our assumption that x̆N (ω, t) 6= xN (ω, t), which
completes the proof. �

C. Proof for Theorem 2
Integrating (8) and (9) and taking the expected value of

square of the difference, we obtain

E|x(t)− xN (t)|2 = E
[∣∣∣∣(x(0)− xN (0)) +

∫ t

0

(f(x, s)−

f (xN , s)) ds+

∫ t

0

d(Ws −
N∑
i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣
2
 ,

≤ E|(x(0)− xN (0))|2︸ ︷︷ ︸
0=:B (say)

+E
∣∣∣∣∫ t

0

(f(x, s)− f(xN , s))ds

∣∣∣∣2+

E

∣∣∣∣∣
∫ t

0

d(Ws −
N∑
i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣
2

,

≤ B + tE
∫ t

0

|f(x, s)− f(xN , s)|2 ds+

E

∣∣∣∣∣
∫ t

0

d(Ws −
N∑
i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣
2

, (21)



where in the last step, we used Chebyshev’s integral
inequality. Consequently, we have

lim
N→∞

E|x(t)− xN (t)|2 ≤ B + lim
N→∞

tE
[∫ t

0

|f(x, s)− f(xN , s)|2

ds] + lim
N→∞

E

∣∣∣∣∣
∫ t

0

d(Ws −
N∑
i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣
2

. (22)

Using the Lipschitz criterion and property of KL expansion,
from (22) we get

lim
N→∞

E|x(t)− xN (t)|2︸ ︷︷ ︸
v(t) (say)

≤ B + tC

∫ t

0

lim
N→∞

E |x(s)− xN (s)|2 ds,

⇒ v(t) ≤ B +A

∫ t

0

v(s)ds⇒ v(t) ≤ B exp(At), (23)

where the last step follows from Gronwall’s inequality, with
tC ≤ A,∀t ∈ (0, T ]. Therefore, lim

N→∞
E|x(t)− xN (t)|2 =

0, since x(0) = xN (0)⇒ B = 0, as per our assumption. �

D. Proof for Corollary 3

In the proof of Theorem 2, for x(0) 6= xN (0), taking the
limit N →∞ yields

lim
N→∞

E|x(t)− xN (t)|2 ≤ lim
N→∞

E|(x(0)− xN (0))|2+

lim
N→∞

tE
∫ t

0

|f(x, s)− f(xN , s)|2 ds+

lim
N→∞

E

∣∣∣∣∣
∫ t

0

d(Ws −
N∑
i=1

√
Λiζi(ω)ei(s))

∣∣∣∣∣
2

.

Going through the subsequent steps as before, we arrive at

lim
N→∞

E|x(t)− xN (t)|2 = 0, if lim
N→∞

E|x(0)− xN (0)|2 = 0.

However, if xN (0) is the gPC expansion of x(0), then
they asymptotically converge in m.s. sense [31]. Hence
lim
N→∞

E|x(0)− xN (0)|2 = 0, which, from the Gronwall’s

inequality, implies that lim
N→∞

E|x(t)− xN (t)|2 = 0. This
completes our proof. �
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