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Abstract— In a recent work [1], we have introduced a proba-
bilistic formulation for the model validation problem to provide
a unifying framework for (in)validating nonlinear deterministic
and stochastic models, in both discrete and continuous time. As
an extension to that work, this paper provides rigorous perfor-
mance bounds for the model validation algorithms presented
in [1]. Further, it is shown that the existing method of barrier
certificate based nonlinear invalidation oracle, can be recovered
as a special case of the proposed formulation. Some results are
derived to quantify the effects of initial uncertainty on the
Wasserstein gap. And finally, for discrete-time LTI and LTV
systems, upper bounds on Wasserstein distance are derived in
terms of the parameters of the systems under comparison, thus
providing an offline estimate of the gap.

I. INTRODUCTION

Recently, a probabilistic formulation of the model valida-
tion problem was proposed in [1] for nonlinear systems from
the perspective of Monge-Kantorovich optimal transport [2]–
[4]. Instead of binary invalidation oracle, this framework
allows a relaxed notion of validation in probability. As the
block diagram in Fig. 1 shows, in this formulation, the sys-
tems under comparison are excited with a known input signal
u (t), and an initial probability density function (PDF) ξ0 (x̃),
supported over the extended state space x̃ := {x, p}T , where
the states x ∈ Rns , and the parameters p ∈ Rnp . Given the
PDF η (y (t)) supported over the true output space y ∈ Rno ,
and a candidate model, we compute1 and then compare the
model predicted output PDF η̂ (ŷ (t)), with η (y (t)) at each
instances of measurement availability {tj}τj=1. In [1], it was
argued that the suitable metric for such comparison is L2

Wasserstein distance of order two, denoted by 2W2, and
computational method for the same was provided therein,
for comparing two general nonlinear non-Gaussian systems.
The end result is a gap trajectory 2W2 (t), which should
remain within the user-specified tolerance levels {γj}τj=1 for
validation. Due to finite sample computation, a probabilistic
robust validation certificate is computed to guarantee the
accuracy of the validation/invalidation oracle.

The main merit of this approach is its flexibility to handle
both deterministic and stochastic dynamics, in both discrete
and continuous time, without making any assumption about
the structure of the nonlinearity (e.g. semi-algebraic) or about
the uncertainty (e.g. interval-valued structured uncertainty
as in robust control based methods [9]–[11], or set-valued
uncertainty as in Barrier certificate method [12]). Also,
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Fig. 1. Block diagram for the probabilistic model validation formulation.

the nature (structured or unstructured) and sources (initial
condition, parameters, model error) of uncertainties can be
heterogeneous. Since all these could be tackled in a unifying
non-parametric framework, it motivates us to take a rigorous
look at the sample and storage complexity of the Wasserstein
computation for practical applicability. Further, from [1] it
was not clear how the proposed formulation relates with
existing nonlinear validation methods like [12]. Moreover,
given a model dynamics, it remains to quantify how the
initial PDF affects 2W2. And lastly, given a model pair, it
might be of interest to see if one could upper bound 2W2 for
simple dynamics like discrete-time linear systems, in terms
of the parameters of the systems under comparison, as that
would enable an offline estimate of the gap. These are the
questions we set to answer in this paper.

The contributions of this paper, beyond the prior work [1]
are as follows.

1) We provide sample and storage complexity results
for computing 2W2 at each instance of measurement
availability {tj}τj=1.

2) Using an example from [12], we show that our
formulation indeed recovers the invalidation oracles
predicted by barrier certificate approach. Notice
that, unlike barrier certificates, the computation in
the proposed formulation does not suffer from any
conservatism when the nonlinearity is not semi-
algebraic.

3) We provide a framework to characterize the effect of
initial uncertainty on the Wasserstein gap for scalar
dynamics, and show in particular, that for scalar
linear systems, given a set of admissible initial PDFs,
the initial PDF that maximizes Wasserstein gap (at
all times), is the one with maximum second raw
moment. All higher order moments have no effect on
Wasserstein gap.

4) For discrete-time linear Gaussian systems, we derive



upper bounds for 2W2 (k), k ∈ N ∪ {0}, in terms of
system parameters.

The paper is structured as follows. Section 2 provides
a short background on Wasserstein distance. The sample
complexity and storage complexity results for Wasserstein
based comparison of output PDFs, are derived in Section
3. Section 4 is intended to show that the results of existing
nonlinear invalidation methods like barrier certificate-based
deductive inference, can be recovered in this probabilistic
setting. In Section 5, we derive some preliminary results on
how the initial PDF can affect the Wasserstein gap depending
on the structure of the dynamics. Section 6 provides upper
bounds for Wasserstein distance in discrete-time linear model
validation setting for both LTI and LTV models; and Section
7 concludes the paper.

Notation: Most notations are standard. ||.||F denotes the
matrix Frobenius norm while ||.||p stands for the standard
Lp norm. By tr (.), and λmax (.), we denote trace and max-
imum eigenvalue, respectively. The symbol vol (.) denotes
Lebesgue volume.

II. BACKGROUND ON WASSERSTEIN DISTANCE

Let M1 and M2 be complete, separable metric (Polish)
spaces equipped with pth order distance metric, say the Lp

norm. Then the Wasserstein distance of order q, denoted
as pWq , between two probability measures µ1 and µ2,
supported on M1 and M2, is defined as

pWq (µ1, µ2) :=
[

inf
µ∈M(µ1,µ2)

∫
M1×M2

‖x− y‖qp dµ (x, y)
]1/q

,

where M (µ1, µ2) is the set of all probability measures on
M1 ×M2 with first marginal µ1 and second marginal µ2.
It’s well known [13] that on the set of Borel measures on
Rd having finite second moments, pWq defines a metric. If
the measures µ1 and µ2 are absolutely continuous w.r.t. the
Lebesgue measure, with densities ρ1 and ρ2, then we can
write M (ρ1, ρ2) for the set M (µ1, µ2), and accordingly
pWq (ρ1, ρ2) in lieu of pWq (µ1, µ2). This is assumed to hold
for all subsequent analysis.

The Wasserstein metric is an integral notion of distance,
as opposed to a pointwise notion (e.g. Hellinger distance,
Kullback-Leibler (KL) divergence etc.), on the manifold
of probability densities. This makes Wasserstein distance a
good candidate for model validation, since the supports of
the PDFs under consideration, evolving under two different
dynamics, are often not identical. However, computation of
Wasserstein metric is not straightforward. For real line, a
closed form solution exists [14] in terms of the cumulative
distribution functions (CDFs) of the test PDFs. Let F and G
be the corresponding CDFs of the univariate PDFs ρ1 and
ρ2 respectively. Then

pW
q
q (ρ1, ρ2) =

∫ 1

0

‖F−1 (ς)−G−1 (ς) ‖qp dς. (1)

For multivariate case, in general, one has to compute pWq

from its definition, which can be cast as a linear program
(LP) in mn variables with (m+ n+mn) constraints, where

the respective PDFs have m and n-sample representations.
This was detailed in [1], with p = q = 2. The choice p = 2
is due to the fact that we measure inter-sample distance in
Euclidean metric. The choice q = 2 will be motivated in the
following section.

III. COMPUTATIONAL COMPLEXITY OF COMPARING
OUTPUT PDFS IN WASSERSTEIN DISTANCE

A. Sample Complexity

For a desired accuracy of Wasserstein distance computa-
tion, we want to specify the bounds for number of samples,
say m = n, for a given initial PDF. Since the finite sample
estimate of Wasserstein distance is a random variable, we
need to answer how large should n be, in order to guarantee
that the empirical estimate of Wasserstein distance obtained
by solving the LP with m = n, is close to the true
deterministic value of Wasserstein distance in probability. In
other words, given ε, δ ∈ (0, 1), we want to estimate a lower
bound of m = n as a function of ε and δ, such that

P
(∣∣

2W2

(
ηjm (y) , η̂jn (ŷ)

)
− 2W2

(
ηj (y) , η̂j (ŷ)

)∣∣ < ε
)

> 1− δ, ∀j = 1, 2, . . . , τ.

Similar consistency and sample complexity results are avail-
able in the literature (see Corollary 9(i) and Corollary 12(i) in
[15]) for Wasserstein distance of order q = 1. From Hölder’s
inequality, Wq2 > Wq1 for q2 > q1, and hence that sample
complexity bound, in general, does not hold for q = 2.

To proceed, we need the following results.
Lemma 1: If X , Y , Z are non-negative random variables

such that Y and Z are independent, and X 6 Y + Z, then
for ε > 0, we have

P (X > ε) 6 P (Y + Z > ε) 6 P
(
Y >

ε

2

)
+ P

(
Z >

ε

2

)
.

Definition 1: (Transportation cost inequality) A proba-
bility measure µ is said to satisfy the Lp-transportation cost
inequality (TCI) of order q, if there exists some constant
C > 0 such that for any probability measure ν, pWq (µ, ν) 6√

2CDKL (ν, µ), where DKL denotes the KL divergence. In
short, we write µ ∈ Tq (C).
We will need TCI results independent of dimensions. It was
observed that [16], T1 is not well adapted for dimension
free bounds but T2 is. Also, [17] have demonstrated that
uncertainty evolution can be seen as a gradient flux of free
energy with respect to the Wasserstein metric of order 2. For
these reasons, we choose q = 2.

Theorem 1: (Rate-of-convergence of empirical measure
in Wasserstein metric)(Thm. 5.3, [18]) For a probability
measure ρ ∈ Tq (C ), 1 6 q 6 2, and its n-sample estimate
ρn, we have

P (pWq (ρ, ρn) > θ) 6 Kθ exp

(
−nθ

2

8C

)
, (2)

where θ > 0, and the constant Kθ is ob-
tained by solving the optimization problem logKθ :=
1
C

inf
µ

card (supp µ) (diam (supp µ))2. The optimization takes

place over all probability measures µ of finite support, such
that pWq (ρ, µ) 6 θ/4.



We now make few notational simplifications. In this subsec-
tion, we denote ηj (y) and η̂j (y) by η and η̂, and their finite
sample representations by ηm and η̂n, respectively. Then we
have the following result.

Theorem 2: (Rate-of-convergence of empirical Wasser-
stein estimate) For true densities η and η̂, let corresponding
empirical densities be ηm and η̂n, evaluated at respective
uniform sampling of cardinality m and n. Let C1, C2, be
the TCI constants for η and η̂, respectively and fix ε > 0.
Then

P
(∣∣∣∣ 2W2 (ηm, η̂n) − 2W2 (η, η̂)

∣∣∣∣ > ε

)
6 K1 exp

(
− mε2

32C1

)
+K2 exp

(
− nε2

32C2

)
. (3)

Remark 1: At a fixed time, K1, K2, C1 and C2 are
constants in a given model validation problem, i.e. for a
given pair of experimental data and proposed model. How-
ever, values of these constants depend on true and model
dynamics. In particular, the TCI constants C1 and C2 depend
on the dynamics via respective PDF evolution operators.
The constants K1 and K2 depend on η and η̂, which in
turn depend on the dynamics. For pedagogical purpose,
we next illustrate the simplifying case K1 = K2 = K,
C1 = C2 = C , to compare the nature of the bound in (3)
vis-a-vis with Lemma 1 in [1].

Corollary 3: (Sample complexity for empirical Wasser-
stein estimate) For desired accuracy ε ∈ (0, 1), and confi-
dence 1 − δ, δ ∈ (0, 1), the sample complexity m = n =
Nwass, for finite sample Wasserstein computation is given by

Nwass =
(

32C

ε2

)
log
(

2K
δ

)
. (4)

B. Storage complexity

For m = n, the constraint matrix for the LP described
in [1], is a binary matrix of size 2n × n2, whose each row
has n ones. Consequently, there are total 2n2 ones in the
constraint matrix and the remaining 2n2 (n− 1) elements
are zero. Hence at any fixed time, the sparse representation
of the constraint matrix needs # non-zero elements ×3 = 6n2

storage. The probability mass function (PMF) vectors are, in
general, fully populated. In addition, we need to store the
model and true sample coordinates, each of them being a
no-tuple. Hence at any fixed time, constructing cost matrix
requires storing 2non values. Thus total storage complexity
at any given snapshot, is 2n (3n+ no + 1) = O

(
n2
)
,

assuming n > no. However, if the sparsity of constraint
matrix is not exploited by the solver, then storage complexity
rises to 2n

(
n2 + no + 1

)
= O

(
n3
)
. For example, if we

take n = 1000 samples and use IEEE 754 double precision
arithmetic, then solving the LP at each time requires either
megabytes or gigabytes of storage, depending on whether or
not sparse representation is utilized by the LP solver. We
have used MOSEK2 as the LP solver.

2available at www.mosek.com

Fig. 2. This plot illustrates how Prajna’s barrier certificate-based invali-
dation result (shown for Example 1), can be recovered in our probabilistic
model validation framework. To show X̃T (red rectangle) is not reachable
from the set X̃0 (blue rectangle) in time T = 4, we sample X̃0 uniformly
and propagate that uniform ensemble subject to the given dynamics till
T = 4. The samples are color coded (red = high probability, blue = low
probability) according to the value of the joint PDF at that location. Here,
the model is invalidated since the support of the joint PDF at final time and
the set X̃T are disjoint.

IV. COMPARISON WITH BARRIER CERTIFICATE METHOD

Barrier certificates were introduced by Prajna [12] as a
tool for deductive inference based model invalidation. The
method is attractive for two reasons. First, it is a non-
simulation based invalidation method. If a barrier function,
with some desired properties, can be constructed, then the
model is invalidated and the existence of such function pro-
vides a proof/certificate for the invalidation oracle. Secondly,
the applicability of this method has been shown to a broad
class of dynamical systems. Naturally, we want to investigate
how the present method relates with barrier certificate-based
invalidation.

Given the initial probability density and final time, we
can write the density at the final time using transfer operator
that depends on the prescribed model dynamics. Given initial
and final measurements as sets, we can transcribe them to
uniform densities supported on those sets. These two uniform
densities would then constitute a pair, which must satisfy
the transfer operator equation. If not, then the model is
invalidated. This probabilistic method is illustrated below
through an example.

Example 1: Consider the nonlinear model validation
problem Example 4 in [12], where the model is ẋ = −px3,
with parameter p ∈ P = [0.5, 2]. The measurement data are
X0 = [0.85, 0.95] at t = 0, and XT = [0.55, 0.65] at t =
T = 4. A barrier certificate of the form B (x, t) = B1 (x) +
tB2 (x) was found through sum-of-squares optimization [20]
where B1 (x) = 8.35x + 10.40x2 − 21.50x3 + 9.86x4, and
B2 (x) = −1.78 + 6.58x − 4.12x2 − 1.19x3 + 1.54x4.
The model was thereby invalidated by the existence of
such certificate, i.e. the model ẋ = −px3, with parameter
p ∈ P was shown to be inconsistent with measurements
{X0,XT , T}.

To tackle this problem in our model validation framework,



consider the spatio-temporal evolution of the joint PDF
ξ (x, p, t) over the extended state space x̃ = [x p]T , with
initial support X̃0 := X0 × P . Method-of-characteristics
implementation of the Liouville equation [5] yields

ξ (x, p, t) = ξ0 (x0, p) exp
(
−
∫ t

0

div
(
f̃ (x (τ) , τ)

)
dτ

)
. (5)

For the model dynamics ẋ = −px3, we have

div
(
f̃ (x (τ))

)
= −3p (x (τ))2 and

1
x2

=
1
x2

0

+ 2pt.

Consequently, (5) results

ξ (x, p, t) = ξ0 (x0, p)
(
1 + 2x2

0pt
)3/2

=
1

(1− 2x2pt)3/2
ξ0

(
± x√

1− 2x2pt
, p

)
.(6)

In particular, for ξ0 (x0, p) ∼ U (x0, p) =
1

vol
(
X̃0

) ,

ξT (xT , p, T ) ∼ U (xT , p) =
1

vol
(
X̃T
) and T = 4, (6)

requires us to satisfy

(
1− 8x2

T p
)

=

vol
(
X̃T

)
vol
(
X̃0

)
2/3

> 0⇒ 1 > 8x2
T p. (7)

Since 8x2
T p is an increasing function in both xT ∈ XT

and p ∈ P , we need at least 1 > 8 (xT )2min pmin = 8 ×
(0.55)2 × 0.5 = 1.21, which is incorrect. Thus the PDF
ξT (xT , p, T ) ∼ U (xT , p) is not finite-time reachable (Fig.
2) from ξ0 (x0, p) ∼ U (x0, p) for T = 4, via the proposed
model dynamics. Hence our measure-theoretic formulation
recovers Prajna’s invalidation result [12] as a special case.
Instead of binary validation/invalidation oracle, we can now
measure the degree of validation by computing the Wasser-
stein distance

2W2

 1

(1− 2x2
T pT )3/2

1

vol
(
X̃0

) , 1

vol
(
X̃T
)


between the model predicted and experimentally measured
joint PDFs. More importantly, it dispenses off the con-
servatism in barrier certificate based model validation by
showing that the goodness of a model depends on the
measures over same supports X̃0 and X̃T . Indeed, given a
joint PDF ξ (xT , p, T ) supported over X̃T at T = 4, from
(6) we can explicitly compute the initial PDF ξ0 (x0, p)
supported over X̃0 that, under the proposed model dynamics,
yields the prescribed PDF, i.e.

ξ0 (x0, p) =
1

(1 + 8x2
0p)

3/2
ξ

(
± x0√

1 + 8x2
0p
, p, 4

)
. (8)

In other words, if the measurements find the initial density
given by (8) and final density ξ (xT , p, T ) at T = 4, then the
Wasserstein distance at T = 4 will be zero, thereby perfectly
validating the model.

V. EFFECT OF INITIAL UNCERTAINTY ON 2W2

The inference for probabilistic model validation depends
on the initial PDF ξ0 (x0). To account robust inference in
presence of initial PDF uncertainty, a notion of probabilis-
tically robust validation certificate (PRVC) was introduced
in [1]. However, it does not resolve the sensitivity of the
gap on the choice of initial PDF. This issue is important,
for example, in model discrimination, where one looks for
an initial PDF that maximizes the gap between two models,
which seem to exhibit similar performance. The notion is
similar to optimal input design for system identification.
In particular, we show that for linear dynamics, the gap is
oblivious beyond the first two moments. We restrict ourselves
to scalar dynamics for this analysis.

A. Tools for Analysis

The main machinery for univariate analysis is the quantile
function Qy (ς) of the output process, defined as the inverse
of the CDF for y. Here ς ∈ [0, 1] denotes probability mass.
(1) enables us to write squared Wasserstein distance as the
integral of the squared difference of the respective output
quantile functions. Further, instead of propagating densities
and then transforming them back to quantiles, it would be
convenient to directly work with the quantile Fokker-Planck
equation (QFPE) [22], given by

∂tQ = f (Q, t)− 1
2
∂Q (g (Q, t))2 +

1
2

(g (Q, t))2
∂ςςQ

(∂ςQ)2

associated with scalar dynamics dx (t) = f (x) dt+g (x) dβ,
where β is the standard Wiener process. Moreover, the
quantile transformation rule [23] states that for an algebraic
map y = h (x), we have

Qy (ς) =

{
h ◦Qx (ς) if h is non-decreasing,
h ◦Qx (1− ς) if h is non-increasing.

(9)

For brevity, we only work out few simple cases to illustrate
the idea.

B. Continuous Time Linear Systems

1) Deterministic dynamics: Let the dynamics of the two
systems be

ẋi = aix, yi = cix, i = 1, 2. (10)

Theorem 4: For any initial density ρ0 (x0), the Wasser-
stein gap between the systems in (10), is given by

2W2 (t) =
√
m20

∣∣∣c1ea1t − c2ea2t
∣∣∣, (11)

where m20 = µ2
0 + σ2

0 , is the second raw moment of
ρ0 (x0), while µ0 and σ0 are its mean and standard deviation,
respectively.

Proof: For (10), Qyi
= ciQxi

, and the QFPE reduces
to a linear PDE ∂tQxi = aiQxi , yielding Qxi (ς, t) =



Q0 (ς) eait, where Q0 is the initial quantile function cor-
responding to ρ0. Thus, we have

( 2W2 (t))2 =
∫ 1

0

(Qy1 (ς, t)−Qy2 (ς, t))2 dς

=
(
c1e

a1t − c2ea2t
)2 ∫ 1

0

(Q0 (ς))2 dς.(12)

Since the quantile function maps probability to the sample
space, hence x0 = Q0 (ς), and dς = ρ0 (x0) dx0. Conse-
quently, we can rewrite (12) as

( 2W2 (t))2 =
(
c1e

a1t − c2ea2t
)2 ∫ ∞

−∞
x2

0 ρ0 (x0) dx0︸ ︷︷ ︸
m20

.

Taking square root to both sides, we obtain the result. It’s
straightforward to check that m20 = µ2

0 + σ2
0 , relating the

central moments with m20.
Remark 2: ( 2W2 has limited dependence on ρ0) The

above result shows that the Wasserstein gap between scalar
linear systems, depends on the initial density up to mean
and variance. Any other aspect (skewness, kurtosis etc.) of
ρ0, even when it’s non-Gaussian, has no effect on 2W2 (t).

Remark 3: (Linear Gaussian systems) For the linear
Gaussian case, one can verify (20) without resorting to the
QFPE. To see this, notice that if ρ0 (x0) = N

(
µ0, σ

2
0

)
, then

the state PDFs evolve as ρxi (xi, t) = N
(
µxi (t) , σ2

xi
(t)
)
,

where µxi (t) and σ2
xi

(t) satisfy their respective state and
Lyapunov equations, which, in this case, can be solved in
closed form. Since ρyi

(yi, t) = N
(
ciµxi

(t) , c2iσ
2
xi

(t)
)
,

and 2W2 between two Gaussian PDFs is known [24] to be√
(µy1 − µy2)2 + (σy1 − σy2)2, the result follows.
Remark 4: (Affine dynamics) Instead of (10), if the dy-

namics are given by ẋi = aix+ bi, yi = cix+ di, i = 1, 2,
then by variable substitution, one can derive that Qxi

(ς, t) =

Q0 (ς) eait +
bi
ai

(
eait − 1

)
. Hence, we get

2W2 (t) =
√

(p (t))2m20 + 2p (t) q (t)m10 + (q (t))2, (13)

where m10 = µ0, p (t) := (c1ea1t − c2ea2t), and q (t) :=
b1c1
a1

(
ea1t − 1

)
− b2c2

a2

(
ea2t − 1

)
+ (d1 − d2).

2) Stochastic dynamics: Consider two stochastic dynam-
ical systems with linear drift and constant diffusion coeffi-
cients, given by

dxi = aix dt+ bi dβ, yi = cix, i = 1, 2, (14)

where β is the standard Wiener process.
Theorem 5: For any initial density ρ0 (x0), the Wasser-

stein gap 2W2 (t) between the systems in (14), is given by

2W2 (t) =
√

(p (t))2m20 + 2p (t) r (t) s (F0) + (r (t))2, (15)

where r (t) :=
|b1|c1√

2a1

√
e2a1t − 1 − |b2|c2√

2a2

√
e2a2t − 1, and

s (F0) :=
√

2E
[
x0 erf−1 (2F0 (x0)− 1)

]
, F0 being the CDF

of x0.

Proof: For systems (14), quantile functions for the
states evolve as (p. 102, [22])

Qxi
(ς, t) = Q0 (ς) eait + |bi|QN (ς)

√
e2ait − 1

2ai
,

where QN (ς) :=
√

2 erf−1 (2ς − 1), is the standard normal
quantile. Thus, the Wasserstein distance becomes

( 2W2 (t))2 =
∫ 1

0

(c1Qx1 (ς, t)− c2Qx2 (ς, t))2 dς

= (p (t))2
∫ 1

0

(Q0 (ς))2 dς

+ 2p (t) r (t)
∫ 1

0

Q0 (ς)QN (ς) dς

+ (r (t))2
∫ 1

0

(QN (ς))2 dς. (16)

Notice that the first and third integrals are m20 and 1,
respectively. Since ς = F0 (x0), the second integral reduces
to ∫ ∞

−∞
x0 F

−1
N ◦ F0 (x0) ρ0 (x0) dx0

=
√

2 E
[
x0 erf−1 (2F0 (x0)− 1)

]
= s (F0) . (17)

This completes the proof.
Remark 5: (Gaussian case) Consider the special case

when ρ0 (x0) = N
(
µ0, σ

2
0

)
. Then Q0 (ς) = µ0 +σ0QN (ς),

and hence the second integral equals σ0. Thus, if the initial
density is normal, then

2W2 (t) =
√

(p (t))2m20 + 2p (t) r (t)σ0 + (r (t))2, (18)

a function of µ0 and σ0, a result which can be verified
otherwise by solving the mean and variance propagation
equations. Hence in stochastic linear case, 2W2 depends
on the entire initial distribution, unlike its deterministic
counterpart.

C. Discrete Time Linear Systems

1) Deterministic dynamics: Let the dynamics of the two
systems be given by the maps

x
(k+1)
i = aix

(k)
i , y

(k)
i = cix

(k)
i , i = 1, 2, (19)

where k ∈ N ∪ {0}, denotes the discrete time index.
Theorem 6: For any initial density ρ0 (x0), the Wasser-

stein gap between the systems in (19), is given by

W (k) =
√
m20

∣∣∣c1ak1 − c2ak2∣∣∣. (20)
Proof: The proof is immediate from linear recursion.

VI. UPPER BOUNDS FOR 2W2 FOR DISCRETE-TIME
LINEAR GAUSSIAN SYSTEMS

A. LTI Bound
Theorem 7: Consider two discrete-time LTI systems

xk+1 = Axk, and x̂k+1 = Âx̂k, k ∈ N ∪ {0}. Let



the initial PDF ξ0 (x0) = N (0, P0). Then, 2W2 (k) 6√
2 (tr (P0))1/2 ||Â−k||F ΩLTI (k), where

ΩLTI (k) :=

(
||Ak||2F ||Â−k||2F (tr (P0))2 − log

(
ns∏
i=1

ϑ2k
i

ϑ̂2k
i

)
− ns

)1/2

,

where the spectrum for A is {ϑi}ns
i=1, and for Â is {ϑ̂i}ns

i=1.
Proof: We know that

ξk = N
(

0, AkP0A
kT
)

= N (0, Pk) ,

ξ̂k = N
(

0, ÂkP0Â
kT
)

= N
(

0, P̂k
)
. (21)

Therefore,

DKL
(
ξk||ξ̂k

)
= DKL

(
Pk||P̂k

)
= tr

(
P̂−1
k Pk − I

)
− log det

(
P̂−1
k Pk

)
. (22)

Now if we assume that the spectrum for P0 is {ρi}ns
i=1, then

from (22), det (Pk) =
ns∏
i=1

(
ρiϑ

2k
i

)
⇒ log det

(
P̂−1
k Pk

)
=

log
ns∏
i=1

ϑ2k
i

ϑ̂2k
i

. Thus, DKL

(
Pk||P̂k

)
= tr

(
P̂−1
k Pk

)
−

log
ns∏
i=1

ϑ2k
i

ϑ̂2k
i

− ns.

Now, observe that tr
(
P̂−1
k Pk

)
6 tr

(
P̂−1
k

)
tr (Pk), since

covariance matrices are symmetric positive semi-definite.
However, tr (Pk) = tr

(
AkP0A

kT
)

= tr
(
Ak

T

AkP0

)
6

tr
(
Ak

T

Ak
)

tr (P0) = ||Ak||2F tr (P0); where we have used
the fact that trace of a matrix product is invariant under
cyclic permutation of the matrices. Likewise, tr

(
P̂−1
k

)
6

||Â−k||2F tr (P0). Combining these results, we get

DKL
(
Pk||P̂k

)
6 ||Ak||2F ||Â−k||2F (tr (P0))2 − log

ns∏
i=1

ϑ2k
i

ϑ̂2k
i

− ns︸ ︷︷ ︸
(ΩLTI(k))2

.

Now to relate DKL with 2W2, we invoke the
TCI for Gaussian case [21], which states 2W2 (k) 6√

2λmax

(
P̂−1
k

)
DKL (k). But λmax

(
P̂−1
k

)
6 tr

(
P̂−1
k

)
6

||Â−k||2F tr (P0). These two, coupled with TCI, results

2W2 (k) 6
√

2 (tr (P0))1/2 ||Â−k||F ΩLTI (k) . (23)

Corollary 8: (A relaxed bound) Since ΩLTI (k) 6
||Ak||F ||Â−k||F tr (P0), the above Theorem can be relaxed
to

2W2 (k) 6
√

2 (tr (P0))3/2 ||Â−k||2F ||Ak||F . (24)

B. LTV Bound
Theorem 9: Consider two discrete-time LTV systems

xk+1 = Akxk, and x̂k+1 = Âkx̂k, k ∈ N ∪ {0}. Let

the initial PDF ξ0 (x0) = N (0, P0). Then, 2W2 (k) 6√
2 (tr (P0))1/2 ||Â−1

k Â−1
k−1 . . . Â

−1
1 ||F ΩLTV (k), where

ΩLTV (k) :=
(
||AkAk−1 . . . A1||2F ||Â−1

k Â−1
k−1 . . . Â

−1
1 ||

2
F (tr (P0))2

− log

 ns∏
i=1

(ϑ1iϑ2i . . . ϑki)
2(

ϑ̂1iϑ̂2i . . . ϑ̂ki
)2

− ns


1/2

,

where ϑki and ϑ̂ki are the ith eigenvalues of Ak and Âk,
respectively.

Proof: The proof is similar to the LTI case and follows
by showing DKL

(
Pk||P̂k

)
6 (ΩLTV (k))2. We skip the

details here.

VII. CONCLUSIONS

As an extension of our earlier work [1], this paper for-
malizes the probabilistic model validation framework pro-
posed therein. First, to ensure the practical applicability,
sample complexity and storage complexity bounds are de-
rived. Secondly, in addition to providing a relaxed notion
of validation in probability, it is shown to recover the
invalidation oracle from barrier certificate formulation, as
a special case. Thirdly, some results on gap sensitivity to
the initial uncertainty, are presented. And finally, bounds are
derived for the Wasserstein gap in discrete-time linear model
validation scenario.

APPENDIX

A. Proof for Lemma 1

(i) Proof of P (X > ε) 6 P (Y + Z > ε): Let A1 :=
{ω : X (ω) > ε} and A2 := {ω : Y (ω) + Z (ω) > ε}.
If we denote Bε1 := {ω : X (ω) 6 ε} and Bε2 := {ω :
Y (ω) + Z (ω) 6 ε}, then

X (ω) 6 Y (ω) + Z (ω) < ε ∀ ω ∈ Ω
⇒ Bε2 ⊆ Bε1 ⇒ P (Bε2) 6 P (Bε1)

⇒ 1− P (Bε2) > 1− P (Bε1)⇒ P (A2) > P (A1) .

(ii) Proof of P (Y + Z > ε) 6 P
(
Y >

ε

2

)
+ P

(
Z >

ε

2

)
:

Let A := {ω : Y (ω)+Z (ω) > ε}, B := {ω : Y (ω) 6 ε/2},
and C := {ω : Z (ω) 6 ε/2}. Next, we write

P (A) = P ((A ∩Bc ∩ Cc) ∪Bc ∪ Cc) . (25)

Taking E1 := A∩Bc ∩Cc, E2 := Bc, E3 := Cc, and noting
that P (E1) = P (E1 ∩ E2) = P (E3 ∩ E1) = P (E1 ∩ E2 ∩ E3),
from Boole-Bonferroni inequality (Appendix C, [19]), (25)
yields

P (A) = P (E1 ∪ E2 ∪ E3) = P (E2) + P (E3)− P (E2 ∩ E3)
6 P (E2) + P (E3) .



B. Proof for Theorem 2
The main idea is to use triangle inequality and symmetry

of Wasserstein distance to reduce the problem of rate-of-
convergence of empirical 2W2 to its true value, to the
“easier” problem of bounding rate-of-convergence of em-
pirical density to the respective true density, measured in
Wasserstein distance. Since Wasserstein distance is a metric,
from triangle inequality

2W2 (ηm, η̂n) 6 2W2 (ηm, η) + 2W2 (η̂n, η)

6 2W2 (ηm, η) + 2W2 (η̂n, η̂) + 2W2 (η, η̂)

⇒ 2W2 (ηm, η̂n) − 2W2 (η, η̂) 6 2W2 (ηm, η) + 2W2 (η̂n, η̂) . (26)

Since 2W2 (ηm, η̂n) is a random variable, the LHS of (26)
is a random variable, which we denote as X . Further, if
we denote the random variables 2W2 (ηm, η) as Y , and
2W2 (η̂n, η̂) as Z, then (26) can be seen as a probabilistic
inequality, i.e. X (ω) 6 Y (ω) + Z (ω) ∀ ω ∈ Ω. It can be
noted that X , Y and Z are independent random variables.
Further, observe that Y and Z are non-negative but X
need not be. However, since (26) holds for all ω ∈ Ω, we
can relabel X as the absolute value of the LHS of (26).
Otherwise, if X is negative, (26) is trivially satisfied. Now
we are in a position to invoke Lemma 1.

Combining (26) with Lemma 1, we have

P
(∣∣∣∣ 2W2 (ηm, η̂n) − 2W2 (η, η̂)

∣∣∣∣ > ε

)
6

P
(

2W2 (ηm, η) >
ε

2

)
+ P

(
2W2 (η̂n, η̂) >

ε

2

)
, (27)

where each term in the RHS of (27) can be separately upper-
bounded using Theorem 1 with θ 7→ ε

2
, i.e.

P
(

2W2 (ηm, η) >
ε

2

)
6 K1 exp

(
− mε2

32C1

)
,

P
(

2W2 (η̂n, η̂) >
ε

2

)
6 K2 exp

(
− nε2

32C2

)
. (28)

Hence the result.
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