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Abstract— This paper connects the time-domain uncertainty
propagation approach for model validation in Wasserstein
distance 2W2, introduced by the authors in [1], with the
frequency domain model validation in the same. To the best of
our knowledge, this is the first frequency domain interpretation
of Monge-Kantorovich optimal transport. It is shown that the
asymptotic 2W2 can be written as functions of the H2 norms
of the system gains, which have intuitive meaning. A geometric
interpretation for this newly derived frequency-domain formula
is given. The geometric interpretation helps us in comparing
Wasserstein distance with classical frequency-domain validation
metrics like ν-gap.

I. INTRODUCTION

A probabilistic formulation for the time-domain model
validation problem was proposed recently [1] by the au-
thors. For both deterministic and stochastic systems, the
proposed method uses uncertainty propagation as a construct
to perform model validation. The main idea relies on the
following notion: two systems, starting from the same initial
ensemble, are close if the distributions of trajectories sup-
ported over the respective output spaces, remain “close” at
each time. The notion of distributional closeness, as opposed
to closeness in trajectories, is desired to account various
sources of uncertainties (e.g. initial condition, parametric,
modeling uncertainty etc.). Moreover, it is desired that the
validation framework should not make any prior assumption
about the nature of the uncertainty (e.g. interval-valued
structured uncertainty as in robust control based validation
frameworks [2], [3], set-valued uncertainty as in barrier
certificate framework [4], statistically parametric (moment-
based) uncertainty as in polynomial chaos framework [5]).
To quantify the distributional closeness between the mea-
sured and model-predicted outputs, we used L2 Wasserstein
distance of order 2, denoted as 2W2 as a metric. It was
shown in [1] that unlike pointwise notions of distances
on the manifold of probability densities, the Wasserstein
distance, originated from the Monge-Kantorovich theory of
optimal transport [6], [7], is an integral notion of distance
and is a measure of the minimum amount of work needed
to convert one distributional shape to the other. It was
shown that computation of 2W2 is fully non-parametric and
it is robust against unequal number of samples, and non-
overlapping supports – situations commonly encountered in
nonlinear model validation. To conclude a model is valid
with high probability, its Wasserstein gap trajectory 2W2 (t)
must lie below user-specified tolerance levels, at all times. A
probabilistically robust validation certificate was constructed
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in [1] to guarantee provably correct inference through a
finite-sample computation.

Although the time-domain formulation described above
provides a unifying model validation framework in both
discrete and continuous time, for both linear and nonlinear
systems, with heterogeneous sources of uncertainties, two
fundamental question remains: for the special case of linear
model validation, is there a frequency-domain characteriza-
tion of Wasserstein gap? If yes, then how does that compare
with the existing notions of frequency domain model valida-
tion?

The purpose of this paper is to answer these two ques-
tions. We provide frequency domain characterizations for
the asymptotic Wasserstein distance lim

t→∞2W2 (t), henceforth
simply denoted as W , in terms of theH2 norms of the system
transfer gains. We derive exact frequency-domain formulae
for W for single-input-single-output (SISO), multi-input-
single-output (MISO), and multi-input-multi-output (MIMO)
case. For SISO and MISO case, the formulae for W have a
nice intuitive interpretation as the difference between average
system gains. For MIMO case, though exact frequency-
domain formula is complicated than SISO and MISO case,
we derive simpler upper and lower bounds for the same.

To answer the second question, we resort to geometric
arguments via stereographic projection. To compare ν-gap
metric (which is normalized between 0 and 1) and W (which
is un-normalized), we provide two different constructions.
One is un-normalized comparison, which results comparison
on the extended complex plane and the other is normal-
ized comparison, which results comparison on the Riemann
sphere. During the second comparison, we get an intrinsic
normalization of W . Some properties about the sensitivity
of W as a frequency-domain metric are discussed.

Notation: Unless otherwise specified, a transfer function
with “hat” symbol ̂ denotes the model, else it denotes the
true system. Superscripts ∗ and H denote complex conjugate
and conjugate transpose respectively. The notation tr(.) stands
for trace, det(.) stands for determinant, and ||M ||F denotes
the Frobenius norm of matrix M . The symbol wno(.) denotes
winding number.

II. BACKGROUND

Let M1 and M2 be complete, separable metric (Polish)
spaces equipped with pth order distance metric, say the Lp

norm. Then the Wasserstein distance of order q, denoted
as pWq , between two probability measures µ1 and µ2,



supported on M1 and M2, is defined as

pWq (µ1, µ2) :=
[

inf
µ∈M(µ1,µ2)

∫

M1×M2

‖x− y‖qp dµ (x, y)
]1/q

,

where M (µ1, µ2) is the set of all probability measures on
M1 ×M2 with first marginal µ1 and second marginal µ2.
It’s well known [8] that on the set of Borel measures on
Rd having finite second moments, pWq defines a metric. If
the measures µ1 and µ2 are absolutely continuous w.r.t. the
Lebesgue measure, with densities ρ1 and ρ2, then we can
write M (ρ1, ρ2) for the set M (µ1, µ2), and accordingly
pWq (ρ1, ρ2) in lieu of pWq (µ1, µ2). This is assumed to hold
for all subsequent analysis.

The Wasserstein metric is an integral notion of distance,
as opposed to a pointwise notion (e.g. Hellinger distance,
Kullback-Leibler (KL) divergence etc.), on the manifold
of probability densities. This makes Wasserstein distance a
good candidate for model validation, since the supports of
the PDFs under consideration, evolving under two different
dynamics, are often not identical. However, computation of
Wasserstein metric is not straightforward. For real line, a
closed form solution exists [9] in terms of the cumulative
distribution functions (CDFs) of the test PDFs. Let F and G
be the corresponding CDFs of the univariate PDFs ρ1 and
ρ2 respectively. Then

pW
q
q (ρ1, ρ2) =

∫ 1

0

‖F−1 (ς)−G−1 (ς) ‖qp dς. (1)

For multivariate case, in general, one has to compute pWq

from its definition, which can be cast as a linear program
(LP) in mn variables with (m+ n+mn) constraints, where
the respective PDFs have m and n-sample representations.
This was detailed in [1], with p = q = 2. The choice p = 2
is due to the fact that we measure inter-sample distance in
Euclidean metric. The choice q = 2 ensures good regularity
properties for the metric.

III. FREQUENCY DOMAIN FORMULAE FOR W

A. SISO Case

Theorem 1: Consider two stable LTI systems with transfer
functions Gi, i = 1, 2, both excited by stationary Gaussian
input u (t) ∼ N

(
µu, σ

2
u

)
, with power spectral density (PSD)

Su (ω). Then the Wasserstein gap W between them, is given
by

W (G1, G2) =
√
µ2
u (G1 (0)−G2 (0))2 + (σ1 − σ2)2

, (2)

with σi =
√∫ +∞
−∞ |Gi (jω)|2Su (ω) dω − µ2

uG
2
i (0), i = 1, 2.

Proof: Let yi (t), i = 1, 2, denote the sample paths of
the respective stationary outputs, with densities N

(
µi, σ

2
i

)
.

If Ryi
(τ) are the respective autocorrelations with τ being the

corresponding correlation window, then stationarity implies

Ryi
(τ) = E [yi (t+ τ) yi (t)]⇒ Ryi

(0) = E
[
(yi (t))2

]
⇒

∫ +∞

−∞
Syi

(ω) dω =
∫ +∞

−∞
|Gi (jω)|2Su (ω) dω = µ2

i + σ2
i , (3)

where Syi
(ω) are the auto-PSDs, defined as the inverse

Fourier transform of the respective auto-correlations, and we
have used the well-known [10] SISO PSD relation Syi

(ω) =
|Gi (jω)|2Su (ω). On the other hand,

µi = E [yi (t)] = E
[∫ +∞

∞
hi (τ)u (t− τ) dτ

]
,

where hi (.) are the respective impulse response functions.
By changing the order of integrals, and using the fact that
E [u (t− τ)] = E [u (t)] (due to stationarity), we get

µi = µu

∫ +∞

−∞
hi (τ) e−j.0.τdτ = µuGi (0) . (4)

Notice that (3) and (4) yield four equations in four unknowns
µi, σi, i = 1, 2. Since Wasserstein distance between two
univariate Gaussians N

(
µi, σ

2
i

)
is given by [11]

W =
√

(µ1 − µ2)2 + (σ1 − σ2)2
, (5)

the result follows from (3) and (4). The input PSD Su (ω)
is a function of σu, depending on the temporal properties of
the stochastic process u (t).

Corollary 2: If u (t) is Gaussian white noise, then µu = 0,
Su (ω) = σ2

u = constant. Consequently, W is the difference
between the respective H2 norms, up to scaling by the
strength of input disturbance, i.e.

W =
√

2πσu

∣∣∣∣ ||G1 (jω)||2 − ||G2 (jω)||2
∣∣∣∣. (6)

The proof follows immediately from the definition of SISO

H2 norm: ||Gi||2 :=

√
1

2π

∫ +∞

−∞
G∗i (jω)Gi (jω) dω, i =

1, 2. Notice that, in the definitions of Fourier transform pairs
auto-correlation and PSD, the factor 1√

2π
is usually omitted

in the signal processing community [10], [12], and we have
adopted the same convention in proving Theorem 1. Thus,
by scaling the variance of the input noise, one can normalize
the factor

√
2πσu in (6), a condition we will assume in most

derivations without loss of generality.
In the remaining of this paper, we will derive the results
assuming the input to be Gaussian white noise. Given the
input auto and cross-PSDs, how to handle more general
cases, will become apparent from the proofs.

B. MISO Case

Theorem 3: Consider two stable LTI systems with m
inputs and single output, having transfer arrays G and
Ĝ, each being a row vector of size 1 × m. If both the
systems are excited by Gaussian white noise vector u (t) ∼
N
(
0m×1, diag

(
σ2
u

))
, then the Wasserstein gap W between

them, is given by the scaled difference between respective
H2 norms:

W
(
G, Ĝ

)
=
√

2πσu

∣∣∣∣ ||G (jω)||2 − ||Ĝ (jω)||2
∣∣∣∣. (7)

Proof: Like the SISO proof, we still have∫ +∞
−∞ Sy (ω) dω = σ2, since µ = µ̂ = 0, due to whiteness of

the input. This eqn. holds true for both pairs
(
Sy (ω) , σ2

)



and
(
Sŷ (ω) , σ̂2

)
. For the general correlated stationary input,

the MISO PSD relation is known [10] to be

Sy (ω) =
m∑

i=1

m∑

k=1

G∗i (jω)Gk (jω) Suiuk
(ω)︸ ︷︷ ︸

input PSD matrix

dω. (8)

Now, for white input vector, each dimension is an in-
dependent white noise process, implying the dimensions
are mutually uncorrelated. Hence, Ruiuk

(τ) , Suiuk
(ω) =

0, ∀i 6= k. Thus, for Gaussian white vector u (t) ∼
N
(
0m×1, diag

(
σ2
i

))
, (5) results

W =

∣∣∣∣∣

√√√√
∫ +∞

−∞

m∑

i=1

|Gi (jω)|2σ2
ui
dω −

√√√√
∫ +∞

−∞

m∑

i=1

|Ĝi (jω)|2σ2
ui
dω

∣∣∣∣∣

which reduces to (7) for spherical Gaussian case, since
the H2 norm for multivariate case, is defined as ||G||2 :=√

1
2π

∫ +∞

−∞
tr
(
GH (jω)G (jω)

)
dω.

C. MIMO Case

Theorem 4: Consider two stable LTI systems with m
inputs and p outputs, having transfer matrices G and Ĝ. If
both the systems are excited by Gaussian white noise vector
u (t) ∼ N

(
0m×1, diag

(
σ2
u

))
, then the Wasserstein gap W

between them, is given by

W
(
G, Ĝ

)
=
√

2πσu

(
||G (jω)||22 + ||Ĝ (jω)||22 − 2 tr

[(
1

2π

∫ +∞

−∞
GH (jω)G (jω) dω

)1/2 (
1

2π

∫ +∞

−∞
ĜH (jω) Ĝ (jω) dω

)

(
1

2π

∫ +∞

−∞
GH (jω)G (jω) dω

)1/2
]1/2




1/2

. (9)

Proof: In this case, the output correlation matrices of
size p × p satisfy Ry (0) =

∫ +∞
−∞ Sy (ω) dω = Σy . Similar

equation holds for the “hat” system.
Let the (i, k)th elements Gik, Ĝik, of the transfer matrices

relate the response from ith input to the respective kth output.
Then the MIMO PSD relation [13] becomes

Sy (ω) = GH (jω) Su (ω)︸ ︷︷ ︸
Input PSD matrix

G (jω) , (10)

where for Gaussian white input, we have Su (ω) =
σ2
uIm×m ⇒ Sy (ω) = σ2

uG
H (jω)G (jω). Thus, Σy =

σ2
u

∫ +∞
−∞ GH (jω)G (jω) dω. Hence, tr (Σy) = 2πσ2

u||G||22;
tr (Σŷ) = 2πσ2

u||Ĝ||22. Since µy = µŷ = 0, the Wasser-
stein distance between y (t) ∼ N (µy,Σy) and ŷ (t) ∼
N (µŷ,Σŷ) is given by [11]

W =

√
tr (Σy) + tr (Σŷ)− 2 tr

[√
ΣyΣŷ

√
Σy
]1/2

. (11)

Substituting for Σy and Σŷ in (11), in terms of G and Ĝ,
we arrive at (9).

D. Bounds for MIMO Case

Following results provide simpler and easier-to-interpret
bounds for W in the MIMO case.

1) Lower bound:
Lemma 1: Given stable transfer matrices G and Ĝ, the

Wasserstein distance for MIMO case, is lower bounded by
the corresponding expression for SISO or MISO case, i.e.∣∣||G||2 − ||Ĝ||2

∣∣ 6 W .
Proof: Since Σy and Σŷ are positive semi-definite, they

satisfy (p. 527, Fact 8.12.20, [14])

tr
(√

ΣyΣŷ
√

Σy
)1/2

6
√

tr (Σy) tr (Σŷ).

Since tr (Σy) = ||G||22 and tr (Σŷ) = ||Ĝ||22, we get

tr (Σy) + tr (Σŷ)− 2 tr
(√

ΣyΣŷ
√

Σy
)1/2

︸ ︷︷ ︸
W2

>
(
||G||2 − ||Ĝ||2

)2

.

Hence the result.
2) Upper bound:
Lemma 2: If Σy and Σŷ are the output covariance ma-

trices corresponding to stable transfer matrices G and Ĝ
respectively, then we have the following upper bound for
MIMO Wasserstein distance: W 6

∣∣∣∣√Σy −
√

Σŷ
∣∣∣∣
F

.
Proof: It is known (Fact 8.19.21, [14]) that for 0 6

p 6 1, tr
(

ΣpyΣpŷ
)

6 tr
(

Σ1/2
ŷ ΣyΣ1/2

ŷ

)p
. Taking p = 1

2 , we
get

tr
(√

Σy
√

Σŷ
)

6
(√

ΣŷΣy
√

Σŷ
)1/2

=
(√

ΣyΣŷ
√

Σy
)1/2

,

where the last equality follows from the symmetry of Wasser-
stein distance, and can be separately proved by noting that
tr
(√

MMT
)

= tr
(√

MTM
)

for M =
√

Σy
√

Σŷ . Since

tr (Σy) = ||G||22 and tr (Σŷ) = ||Ĝ||22, we obtain

W 6
(

tr (Σy) + tr (Σŷ)− 2 tr
(√

Σy
√

Σŷ
))1/2

︸ ︷︷ ︸
||
√

Σy−
√

Σŷ||F

.

IV. SENSITIVITY OF W IN FREQUENCY DOMAIN

One may interpret the frequency domain formulae for W
derived above, as the difference between average gains of
the two systems. Following are some observations regarding
the same.

A. Scaling

W is sensitive to scaling. For example, if we set Ĝ = kG,
where k is some non-zero scaling constant, then (6), (7) and
(9) yields W = |1 − k| ||G||2 (assuming σu = 1/

√
2π).

Thus a linear relative amplification between two stable LTI
systems, results a linear amplification of the Wasserstein
gap. This can be contrasted with some recent works [15],
[16] in the literature, on defining gap between dynamical



systems, where a gap was shown to be either insensitive
[15] to scaling, or a non-linear function [16] of the scaling
constant. As pointed out in [17], which one is a desirable
property depends on the application.

B. Minimum versus Non-minimum Phase Systems

The frequency domain expressions for W depend only on
the magnitudes of transfer functions. Thus, if we compare

stable transfer functions of the form G± =
∏nz

i=1 (s± zi)∏np

k=1 (s+ pk)
with np > nz , and Re (pk) > 0 ∀k, then W (G+, G−) = 0.
This result is intuitively consistent (see the discussion at p.
1592 in [16]). However, the non-minimum phase zeros are
related to H2 norms of the respective transfer functions via
Poisson-Jensen half-plane formula (Appendix C.8.2 in [19]).

C. SISO Invariance Properties

Being a function of magnitudes only, the Wasserstein
distance, like the chordal metric [18], remains invariant
under complex conjugate transformation, i.e. W

(
G, Ĝ

)
=

W
(
G∗, Ĝ∗

)
. However, unlike chordal metric, W

(
G, Ĝ

)
6=

W
(

1
G ,

1

Ĝ

)
, in general.

V. GEOMETRIC INTERPRETATION OF SISO FORMULA
AND COMPARISON WITH ν-GAP METRIC

The ν-gap metric [20]–[22], was introduced as an impor-
tant tool for linear model validation with good robustness
properties, and its extensions have been proposed [23], [24]
for nonlinear systems. It’s natural to ask how the Wasserstein
distance, proposed in time domain [1] for both linear and
nonlinear systems, relate with ν-gap. Like the SISO ν-
gap, we look for a geometric interpretation of the SISO
formula (6), which may be helpful for comparison between
the metrics.

A. SISO ν-gap and W

Given two transfer functions G1 and G2, let Gi =
NiM

−1
i = M̃−1

i Ñi, i = 1, 2, denote the normalized right
and left coprime factorizations [25], respectively. Further, let
Γi (s) := {Ni (s)Mi (s)}T , and Γ̃i (s) := {M̃i (s)−Ñi (s)}.
If wno(det (Γ∗2 (jω) Γ (jω))) 6= 0, then the SISO ν-gap
metric δν is given by

δν = sup
ω∈R∪{∞}

|G1 (jω)−G2 (jω)|√
1 + |G1 (jω)|2

√
1 + |G2 (jω)|2

, (12)

and lies between 0 to 1. When the winding number condition
is not satisfied, then δν := 1. Geometrically, ν-gap measures
the largest chordal distance κ (ω) between the Nyquist plots
of G1 and G2, projected on the Riemann sphere (Fig. 2). On
the other hand, (6) can be geometrically interpreted as the
difference between the lengths of the r.m.s. distances to the
Nyquist plots of G1 and G2, measured from the origin (Fig.
2).

One difficulty in directly comparing W and δν is that
(12) is normalized, but (6) is not. Hence we can either
compare (6) with the “un-normalized equivalent” of (12),

or we can normalize (6) and then compare with (12). In
the latter case, as of yet, it’s not clear what should be the
intrinsic normalization factor. However, the geometric insight
will guide us to answer both.

B. Comparison on the Complex Plane

Let κproj (ω) be the projection of κ (ω) to the extended
complex plane. For given transfer functions G and Ĝ,
sup
ω
κproj (ω) is the largest pointwise distance between the

two Nyquist plots, and can be taken as an “un-normalized
analogue” of the largest normalized chord length δν .

Theorem 5: Given two stable LTI transfer functions G
and Ĝ, the difference between their r.m.s. lengths, is upper
bounded by the maximum projected chordal length, i.e.
sup
ω
κproj (ω) > W .

Proof: The stereographic projection of a point (x, y) :=
x+jy on the plane, to the point (ξ, η, ζ) on Riemann sphere,
is given by [26]

ξ =
x

1 + x2 + y2
, η =

y

1 + x2 + y2
, ζ =

x2 + y2

1 + x2 + y2
.

Form Fig. 2, NG =
√

1 + |G|2, NĜ =
√

1 + |Ĝ|2.

Since
Nϕ(G)
NG

=
1− ζ

1
=

1
1 + |G|2 , we have Nϕ(G) =

(
1 + |G|2

)−1/2
, and Nϕ(Ĝ) =

(
1 + |Ĝ|2

)−1/2

. Further,

Nϕ(G) NG = Nϕ(Ĝ) NĜ = 1 implies that trian-
gles Nϕ(G)ϕ(Ĝ) and NGĜ are similar. Consequently,
κ (ω)
κproj (ω)

=
Nϕ(Ĝ)
NG

=
1

(1 + |G|2)1/2
(

1 + |Ĝ|2
)1/2

. Thus,

κproj (ω) = |G− Ĝ|. Now, notice that

sup
ω
κproj (ω) = ||G− Ĝ||∞ > ||G− Ĝ||2 > | ||G||2 − ||Ĝ||2 |,

where the last step is the reverse triangle inequality. This
completes the proof.

C. Comparison on the Riemann Sphere

To make a stereographic projection of Wasserstein distance
onto the Riemann sphere, we first consider projections of the
individual r.m.s. lengths given by the H2 norms of G and
Ĝ. The following lemma is relevant in this regard.

Lemma 3: (p. 40, Theorem 2.5.1, [27]) Under stereo-
graphic projection, circlines in the complex plane get pro-
jected to circles on the Riemann sphere and vice versa.
For straight lines on the plane, the corresponding circles on
Riemann sphere pass through the north pole.

Corollary 6: The stereographic projection of H2 norm of
any LTI transfer function can be of length at most π

2 .
Proof: From Lemma 3, all straight lines on the complex

plane, passing through origin, must go through both north
and south poles, i.e. will be meridians on Riemann sphere.
Points on such straight lines, situated infinite extent away
from the origin, under stereographic projection, approach the
north pole from both sides of the Riemann sphere. Thus,
a ray on the complex plane, with fixed end at the origin,



2W2

G (jω)

Ĝ (jω)

||G||2

||Ĝ||2

Re (s)

Im (s)

κ (ω) ϕ(Ĝ)

ϕ(G)

κproj(ω)

Fig. 1. The stereographic projection ϕ : C ∪ {∞} 7→ S, where S is the Riemann sphere of unit diameter, with south pole at the origin of the extended
complex plane. κproj (ω) (dotted green) is the projection of the chordal distance κ (ω) (solid green) to the plane. The dotted black lines on the plane denote
the H2 norms, which measure the r.m.s. distances of the respective Nyquist plots (solid black) from the origin. The solid red arcs show the projections
of the two H2 norms on the Riemann sphere. The projected W is the difference between these arc-lengths. The dotted red arcs show that values of the
respective H2 norm projections can at most be π

2
, resulting a normalization for projected W .

projects to half meridian of circumference at most π
2 . This

completes the proof. Notice that, half-meridian arc length on
the Riemann sphere will be exactly π

2 iff H2 norm is infinity,
either due to unstable transfer function or due to non-zero
feed-through.

Theorem 7: Given two LTI transfer functions G and Ĝ,
the normalized Wasserstein distance WS on the Riemann
sphere S, is given by

WS

(
G, Ĝ

)
=

2
π

∣∣∣ arctan ||G||2 − arctan ||Ĝ||2
∣∣∣. (13)

Proof: If the H2 norm of the transfer function is finite,
the stereographic projection maps a line segment on complex
plane (Fig. 2) to an arc of the half-meridian. The infinitesimal
lengths on the plane and on the sphere relate [27] by

dlS
dlC∪∞

=
1

1 + x2 + y2
. (14)

Taking infinitesimal elements dr and dr̂ along the H2 norms
(Fig. 2), (14) yields the half-meridial arc lengths

s =

∫ ||G||2
0

dr

1 + r2
= arctan ||G||2,

ŝ =

∫ ||Ĝ||2
0

dr̂

1 + r̂2
= arctan ||Ĝ||2.

Since 0 6 ||G||2, ||Ĝ||2 6 ∞ ⇒ 0 6 s, ŝ 6 π
2 , therefore

|s − ŝ| 6 π
2 . Assuming the scaling

√
2πσu = 1 in (6), we

get the projected Wasserstein distance WS = |s − ŝ| =∣∣ arctan ||G||2 − arctan ||Ĝ||2
∣∣, which can be normalized

by π
2 to result WS . Notice that, either of the H2 norms can

be infinity.
The following theorem provides an indirect comparison
between WS and δν . It presents only sufficiency condition.

Theorem 8: Given stable LTI transfer functions G and
Ĝ, let P and P̂ be the points on the respective Nyquist
plots corresponding to their H2 norms. Let γ2 := ∠NPS,
γ̂2 := ∠NP̂S. Similarly, define angles γ (ω) and γ̂ (ω),
for generic points G (jω) and Ĝ (jω). If

∣∣ ||cos γ sin γ̂||2 −
||sin γ cos γ̂||2

∣∣ > 2
π

∣∣γ2 − γ̂2

∣∣, then δν > WS .
Proof: We observe that

δν = sup
ω

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2
=

∣∣∣∣
∣∣∣∣

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
∞
,

>

∣∣∣∣
∣∣∣∣

|G− Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

,

>

∣∣∣∣
∣∣∣∣
∣∣∣∣

|G|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

−
∣∣∣∣
∣∣∣∣

|Ĝ|
√

1 + |G|2
√

1 + |Ĝ|2

∣∣∣∣
∣∣∣∣
2

∣∣∣∣, (15)

where the last step follows form triangle difference inequal-
ity for H2 norms.



Notice that, γ2 and γ̂2 are the angles subtended by
the respective H2 norms with its stereographic projections.
Clearly, 0 6 γ2, γ̂2 6 π

2 , and we can rewrite (13) as
2
π

∣∣γ2− γ̂2

∣∣. Likewise, we define the running angles γ and γ̂
as functions of ω, associated with points G (jω) and Ĝ (jω)
(see Fig. 2). Further, notice that

cos γ =
|G|√

1 + |G|2
, sin γ̂ =

1√
1 + |Ĝ|2

, (16)

cos γ̂ =
|Ĝ|√

1 + |Ĝ|2
, sin γ =

1√
1 + |G|2

, (17)

and consequently, (15) can be written as the difference
between the r.m.s. values of cos γ sin γ̂ and sin γ cos γ̂. Hence
the result.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have provided frequency domain for-
mulae for Wasserstein distance, which has a natural time-
domain interpretation originated from the theory of optimal
transport. The geometric characterization of such formula
was also derived and used to compare with ν-gap metric.
It remains to see if one could derive a normalized coprime
factor characterization of the MIMO W .

In contrast with ν-gap metric δν , and gap metric δg (see
[28]–[30]), W defined as is, measures the open-loop gap,
since both systems are excited by the same input. A small
value of δν

(
G, Ĝ

)
or δg

(
G, Ĝ

)
implies that any controller

that works satisfactorily with one system, will do well for
the other system too, even though the frequency responses
of the open-loop plants may differ significantly. On the other
hand, a small value of W implies closeness of their average
gains. This dichotomy brings up an interesting direction of
research, namely closed-loop validation in W . For example,
given two open-loop systems are within ε levels of W , if the
H2-optimal controller for one system is also wrapped with
the other, then under what conditions the resulting closed
loop systems will still be within ε-level of W . Instead of H2

optimality, other conditions of performance, e.g. set of all
stabilizing controllers, H∞ optimality could be investigated.
It will also be of interest, if these ideas could lead to model
reduction in W .
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