Aero 320: Numerical Methods
 Lab Assignment 9

Fall 2013

Problem 1

Matrix and vector operations

Figure 1: Rotation matrix and coordinate transformation.
In considering the movement of aircraft and space vehicles, it is frequently necessary to transform coordinate systems. The standard inertial North-East-Down (NED) coordinate system has the N -axis pointed north, the E-axis pointed east, and the D-axis pointed toward the center of the Earth. A second system is the vehicle's local coordinate system, with the i-axis straight ahead of the vehicle, the j-axis to the right, and the k-axis downward. We can transform the vector whose local coordinates are (i, j, k) to the inertial system by multiplying via rotation matrices:

$$
\left(\begin{array}{l}
n \\
e \\
d
\end{array}\right)=\underbrace{\left(\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right)}_{R_{\psi}} \underbrace{\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right)}_{R_{\theta}} \underbrace{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right)}_{R_{\phi}}\left(\begin{array}{l}
i \\
j \\
k
\end{array}\right)
$$

(a) The rotation matrices R_{ϕ}, R_{θ} and R_{ψ} are of special type. What kind of matrices are they?
(b) Show that the product matrix $C=R_{\psi} R_{\theta} R_{\phi}$ has the same property that you find in part (a).
(c) Write a $\mathrm{C}++$ program to transform the vector $(i, j, k)^{\top}=(2.06,-2.44,-0.47)^{\top}$ to the inertial system, if $\phi=27^{\circ}, \theta=5^{\circ}$, and $\psi=72^{\circ}$.
(d) Convert the vector $(n, e, d)^{\top}$ found in part (c) back to the local co-ordinates $(i, j, k)^{\top}$, using the same values for ϕ, θ, and ψ as in part (c).
(Hint: Think how to use your answer in part (b), to simplify this computation.)

