Aero 320: Numerical Methods

Lab Assignment 8

Fall 2013

Problem 1

Fixed point iteration method

Consider the equation

$$x^3 + 4x^2 - 10 = 0.$$

This equation can be expressed in the form x = g(x) in the following ways.

(1) $x = g_1(x) = x - x^3 - 4x^2 + 10,$ (2) $x = g_2(x) = \sqrt{\frac{10 - 4x^2}{x}},$ (3) $x = g_3(x) = 0.5\sqrt{10 - x^3},$ (4) $x = g_4(x) = \sqrt{\frac{10}{x + 4}},$ (5) $x = g_5(x) = x - \left(\frac{x^3 + 4x^2 - 10}{3x^2 + 8x}\right).$

(a) With initial condition $x_0 = 1.5$ and a tolerance of 10^{-9} , obtain the root of the equation using the *fixedpoint iteration method*. How many iterations do you need in each case?

(b) Plot g(x) for each case. Does it tell anything about convergence? What about g'(x)? For the method to converge, propose a good interval for x_0 in the case of the function $g_4(x)$.