Aero 320: Numerical Methods
 Lab Assignment 7

Fall 2013

Problem 1

Convergence in root-finding: Newton's method and Halley's method

The equation for Generalized Halley's method is given by

$$
x_{n+1}=x_{n}+(k+1) \frac{\left(\frac{1}{f\left(x_{n}\right)}\right)^{(k)}}{\left(\frac{1}{f\left(x_{n}\right)}\right)^{(k+1)}}
$$

(a) Show that for $k=0$, the equation represents Newton's method. Next, for $k=1$, prove that the equation represents quadratic Halley's method.
(b) Consider solving the nonlinear equation $f(x)=x^{3}+4 x^{2}-10=0$, as discussed in class, using Newton's method. Write a program to compute the order α, and the asymptotic error constant λ, for this case.
(c) Repeat part (b) for quadratic Halley's method.

