Aero 320: Numerical Methods

Lab Assignment 7

Fall 2013

Problem 1

Convergence in root-finding: Newton's method and Halley's method

The equation for Generalized Halley's method is given by

$$x_{n+1} = x_n + (k+1) \frac{\left(\frac{1}{f(x_n)}\right)^{(k)}}{\left(\frac{1}{f(x_n)}\right)^{(k+1)}}$$

(a) Show that for k = 0, the equation represents Newton's method. Next, for k = 1, prove that the equation represents quadratic Halley's method.

(b) Consider solving the nonlinear equation $f(x) = x^3 + 4x^2 - 10 = 0$, as discussed in class, using *Newton's method*. Write a program to compute the order α , and the asymptotic error constant λ , for this case.

(c) Repeat part (b) for quadratic Halley's method.