Aero 320: Numerical Methods
 Lab Assignment 5

Fall 2013

Problem 1

Bisection method

Consider the $n^{\text {th }}$ order Laguerre polynomial, which has the general form $L_{n}(x)=\frac{e^{x}}{n!} \frac{d^{n}}{d x^{n}}\left(e^{-x} x^{n}\right)$. For $n=5$, the Laguerre polynomial of order 5 is

$$
L_{5}(x)=\frac{1}{120}\left(-x^{5}+25 x^{4}-200 x^{3}+600 x^{2}-600 x+120\right)
$$

(a) Write a program in $\mathrm{C}++$ that writes $L_{5}(x)$ to a file for x in the interval $[-2,15]$.
(b) Import the data file generated in part (a) to MATLAB, and plot the function $L_{5}(x)$ versus x. In the plot, use vertical axis limits to be $[-15,20]$. Visually confirm that the function has 5 roots when $x \in[-2,15]$. Also, visually choose a good interval for each root to start the bisection method.
(c) Write a program that takes the initial interval and tolerance (from the keyboard or from a file) and gives the solution, which is the root found using the bisection method.
(d) Plot the value of x_{i} as a function of the iteration number i. Repeat this plot for each of the five roots.

Problem 2

More on bisection method

Consider the function $f(x)=2 \frac{\sin x}{x}$.
(a) Alter your code for Problem 1 to stop running the bisection method code after a fixed number of iterations.
(b) Consider $x \in[-2.2,2]$ for $f(x)$. Run your bisection code and examine the output file. Did the bisection method find the root? Why/why not? (Hint: examine the plot of $f(x)$ in the given range of x.)

