Aero 320: Numerical Methods
 Lab Assignment 17

Fall 2013

Problem 1

Application of numerical differentiation: solving Partial Differential Equations (PDEs)

Consider the one dimensional heat equation

$$
\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0<x<L, \quad 0<t<T
$$

that describes the evolution of temperature $u(x, t)$ along a bar of length L, as a function of position x and time t. Here α denotes the thermal diffusivity of the material. Let us assume the following boundary conditions

$$
\begin{array}{r}
u(0, t)=u(L, t)=0, \\
u(x, 0)=\phi(x), \\
0 \leq x \leq L
\end{array}
$$

Partition the space interval $[0, L]$ as

$$
x_{i}=i \Delta x, \quad i=0,1, \ldots, M, \quad \Delta x=\frac{L}{M}
$$

Similarly partition the time interval $[0, T]$ as

$$
t_{k}=k \Delta t, \quad k=0,1, \ldots, N, \quad \Delta k=\frac{T}{N}
$$

Let us introduce the notation $u_{i, k}=u\left(x_{i}, t_{k}\right)$.
(a) Write the two point forward difference approximation for the left hand side time derivative of the heat equation.
(b) Write the three point central difference approximation for the right hand side spatial derivative of the heat equation.
(c) Use your answer from part (a) and (b), to approximate the heat equation as

$$
u_{i, k+1}=(1-2 \lambda) u_{i, k}+\lambda\left(u_{i+1, k}+u_{i-1, k}\right), \quad \text { where } \lambda=\frac{\alpha^{2} \Delta t}{(\Delta x)^{2}} .
$$

Solution

(a) The two point forward difference approximation for first order derivative with respect to time, gives

$$
\frac{\partial u}{\partial t} \approx \frac{u_{i, k+1}-u_{i, k}}{\Delta t}
$$

(b) The three point central difference approximation for second order derivative with respect to space, gives

$$
\frac{\partial^{2} u}{\partial x^{2}} \approx \frac{u_{i+1, k}-2 u_{i, k}+u_{i-1, k}}{(\Delta x)^{2}}
$$

(c) Substituting the approximations from part (a) and (b) in the heat equation, we get

$$
\begin{aligned}
\frac{u_{i, k+1}-u_{i, k}}{\Delta t} & =\alpha^{2} \frac{u_{i+1, k}-2 u_{i, k}+u_{i-1, k}}{(\Delta x)^{2}} \\
\Rightarrow u_{i, k+1}-u_{i, k} & =\lambda\left(u_{i+1, k}-2 u_{i, k}+u_{i-1, k}\right) \\
\Rightarrow u_{i, k+1} & =(1-2 \lambda) u_{i, k}+\lambda\left(u_{i+1, k}+u_{i-1, k}\right), \quad \text { where } \lambda=\frac{\alpha^{2} \Delta t}{(\Delta x)^{2}} .
\end{aligned}
$$

The above formula is often called FTCS (forward in time, central in space) approximation.

