Aero 320: Numerical Methods
 Lab Assignment 14

Fall 2013

Problem 1

Spline interpolation

(a) Generate a table of datapoints $\left(x_{i}, y_{i}\right), i=0, \ldots, 5$, by sampling the function $y=\frac{1}{1+25 x^{2}}$. To do this, choose $x_{i}=-1: 0.4: 1$. Then evaluate these x_{i} exactly at the function to determine y_{i}.
(b) Set up the matrix-vector equations needed to interpolate these data via linear spline. Repeat the same for quadratic and cubic splines.
(c) Solve the system of linear equations (by hand OR by writing a code) using algorithms you learned in this course (for example, LU decomposition or Gauss elimination).
(d) Plot your spline interpolations together with the datapoints. Compare your results with the MATLAB plots (shown in lab).

Solution

(a)

x_{i}	y_{i}
-1.0	0.038461
-0.6	0.1
-0.2	0.5
0.2	0.5
0.6	0.1
1.0	0.038461

(b) Since there are six datapoints, we have five intervals, and hence five polynomials to find. For linear spline, we need to find polynomials of the form $y=a_{i} x+b_{i}$, where $i=1, \ldots, 5$. We impose continuity at the knot points to derive

$$
\begin{aligned}
y_{0} & =a_{1} x_{0}+b_{1} \\
y_{1} & =a_{1} x_{1}+b_{1} \\
y_{1} & =a_{2} x_{1}+b_{2} \\
y_{2} & =a_{2} x_{2}+b_{2} \\
& \vdots \\
& \\
y_{5} & =a_{5} x_{5}+b_{5}
\end{aligned}
$$

This results a matrix-vector equation with block matrix structure, as shown below, to be solved for the column vector $\left\{a_{1}, b_{1}, a_{2}, b_{2}, \ldots, a_{5}, b_{5}\right\}^{\top}$.

$$
\left(\begin{array}{cc|cccccc}
x_{0} & 1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
x_{1} & 1 & 0 & 0 & 0 & 0 & \ldots & 0 \\
0 & 0 & x_{1} & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & x_{2} & 1 & 0 & 0 & \ldots & 0 \\
\vdots & & & & & & & \vdots \\
0 & 0 & \ldots & \ldots & \ldots & 0 & x_{5} & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
b_{1} \\
a_{2} \\
b_{2} \\
\vdots \\
a_{5} \\
b_{5}
\end{array}\right)=\left(\begin{array}{c}
y_{0} \\
y_{1} \\
y_{1} \\
y_{2} \\
\vdots \\
y_{4} \\
y_{5}
\end{array}\right)
$$

The matrix-vector equation for quadratic spline (where each of the five polynomials have the form $y=$ $\left.a_{i} x^{2}+b_{i} x+c_{i}, i=1, \ldots, 5\right)$ has a similar block structure, given in Lecture slide $\# 5$ in 320-ch3-b.pdf. I give here some details, as it may help you understand better.

There are total $(n+1)$ datapoints, and n intervals. In spline interpolation, since one polynomial needs to be fitted per interval, hence there are total n polynomials. In quadratic spline, there are 3 coefficients $\left(a_{i}, b_{i}, c_{i}\right)$ for each polynomial, and therefore, total $3 n$ unknown coefficients.

Now let's calculate how many equations we've got. In the data, there are 2 endpoints and $(n+1-2)=(n-1)$ interior points. Every interior point generates 3 equations (2 for continuity and 1 for matching slope), thus total $3(n-1)$ equations come from the interior points. The two endpoints generate 3 equations (2 for continuity and 1 extra equation by setting the left most spline to be linear, i.e. $a_{1}=0$). Hence there are total $3(n-1)+3=3 n$ equations available to solve for $3 n$ unknown coefficients. Thus, we must have a matrix-vector equation involving
a square matrix (unlike least squares, where we had a rectangular matrix). The equations are given below.

$$
\begin{aligned}
0 & =a_{1}, \\
y_{0} & =a_{1} x_{0}^{2}+b_{1} x_{0}+c_{1}, \\
y_{1} & =a_{1} x_{1}^{2}+b_{1} x_{1}+c_{1}, \\
y_{1} & =a_{2} x_{1}^{2}+b_{2} x_{1}+c_{2}, \\
0 & =2\left(a_{1}-a_{2}\right) x_{1}+\left(b_{1}-b_{2}\right), \\
y_{2} & =a_{2} x_{2}^{2}+b_{2} x_{2}+c_{2}, \\
y_{2} & =a_{3} x_{2}^{2}+b_{3} x_{2}+c_{3}, \\
0 & =2\left(a_{2}-a_{3}\right) x_{2}+\left(b_{2}-b_{3}\right), \\
y_{3} & =a_{3} x_{3}^{2}+b_{3} x_{3}+c_{3}, \\
& \vdots \\
y_{5} & =a_{5} x_{5}^{2}+b_{5} x_{5}+c_{5} .
\end{aligned}
$$

The matrix-vector form becomes

$$
\left(\begin{array}{ccccccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{0}^{2} & x_{0} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
x_{1}^{2} & x_{1} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{1}^{2} & x_{1} & 1 \\
2 x_{1} & 1 & 0 & -2 x_{1} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & x_{2}^{2} & x_{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x_{2}^{2} & x_{2} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 x_{2} & 1 & 0 & -2 x_{2} & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & x_{3}^{2} & x_{3} & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{3}^{2} & x_{3} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 x_{3} & 1 & 0 & -2 x_{3} & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{4}^{2} & x_{4} & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x_{4}^{2} & x_{4} & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 x_{4} & 1 & 0 & -2 x_{4} & -1 & 0 \\
c_{1} \\
a_{2} \\
b_{1} \\
b_{2} \\
c_{2} \\
a_{3} \\
b_{3} \\
c_{3} \\
a_{4} \\
b_{4} \\
c_{4} \\
c_{4} \\
a_{5} \\
y_{1} \\
y_{0} \\
0 \\
y_{2} \\
y_{2} \\
y_{2} \\
0 \\
y_{3} \\
y_{3} \\
y_{3} \\
0 \\
c_{5}
\end{array}\right)
$$

The matrix-vector equation for cubic spline case will be done in Homework 6.
(c) For the linear case, it is easy to solve for the coefficients by hand. The solution is given in Lecture slide \#2 (see bottom right corner) in 320-ch3-b.pdf, which is

$$
a_{1}=\frac{y_{1}-y_{0}}{x_{1}-x_{0}}, \quad b_{1}=y_{0}-x_{0}\left(\frac{y_{1}-y_{0}}{x_{1}-x_{0}}\right), \text { etc. }
$$

In general, we get $a_{i}=\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}$, and $b_{i}=y_{i-1}-x_{i-1}\left(\frac{y_{i}-y_{i-1}}{x_{i}-x_{i-1}}\right), i=1, \ldots, 5$. The matrix-vector equations

Figure 1: The MATLAB spline interpolations computed from SplineExample.m.
for quadratic and cubic case, can be solved by the Gauss elimination or LU decomposition codes sent earlier.
(d) MATLAB results are generated from SplineExample.m (attached). To generate the same from C++ code, see the .cpp file sent as solution for Homework 6, Problem 2(c).

