# Aero 320: Numerical Methods <br> Homework 6 

Name: $\qquad$
Due: November 18, 2013

NOTE: All problems, unless explicitly asked to write a code, are to be done by hand (with the help of a calculator) but you need to show all the steps. Turn in a hard copy of your HW stapled with this as cover sheet with your name written in the above field. Submit your HW by Monday midnight at Room 201, Reed McDonald Building. Late submissions or failure to submit in the required format will receive no credit.

## Problem 1

Least squares approximation of a continuous function
$(15+10+5=30$ points $)$

In class and previous homework, you learned how to approximate discrete datapoints using least square. In this exercise, you will see that instead of approximating discrete data, we can also approximate a continuous function in least squares sense. This is useful, for example, when the true function, although known, is complicated to evaluate numerically. If we can approximate it using a simpler and "numerically friendly" function, then we can use that approximate function for computational purposes.

Consider any continuous function $f(x)$ in the interval $[-\pi, \pi]$. We want to approximate this function as

$$
\widehat{f}(x)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos k x+b_{k} \sin k x\right)
$$

(a) Show that the coefficients $a_{0}, a_{k}, b_{k}$, that minimize the total square error $\int_{-\pi}^{\pi}(f(x)-\widehat{f}(x))^{2} d x$, are given by
$a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{+\pi} f(x) d x, \quad a_{k}=\frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \cos k x d x, \quad b_{k}=\frac{1}{\pi} \int_{-\pi}^{+\pi} f(x) \sin k x d x, \quad k=1, \ldots, n$.
(b) Using your answer in part (a), for $f(x)=e^{x}$, find the coefficients $a_{0}, a_{k}, b_{k}$, as functions of $k$
only. Your final answers should not have any integral.
(c) Use your answer in part (b) to plot the functions $f(x)=e^{x}$ together with $\widehat{f}(x)$ for $n=1,2,5$, in the interval $[-\pi, \pi]$. In other words, you will be plotting four functions: one true function, and three approximations. Submit a hard copy of your plot. What do you conclude from this plot?

## Solution

(a) We need the following identities. (I am writing these identities for clarity of understanding, students don't need to write these in their Homework submission.)

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos k x d x & =\frac{1}{k}[\sin k x]_{x=-\pi}^{x=\pi}=\frac{1}{k}(\sin (k \pi)-\sin (-k \pi))=\frac{1}{k}(\sin (k \pi)+\sin (k \pi))=\frac{1}{k}(0+0)=0, \\
\int_{-\pi}^{\pi} \sin k x d x & =-\frac{1}{k}[\cos k x]_{x=-\pi}^{x=\pi}=-\frac{1}{k}(\cos (k \pi)-\cos (-k \pi))=-\frac{1}{k}(\cos (k \pi)-\cos (k \pi))=0 .
\end{aligned}
$$

In addition, recall that

$$
\begin{aligned}
\sin A \cos B & =\frac{1}{2}(2 \sin A \cos B)=\frac{1}{2}(\sin (A+B)+\sin (A-B)) \\
\sin A \sin B & =\frac{1}{2}(2 \sin A \sin B)=\frac{1}{2}(\cos (A-B)-\cos (A+B)) \\
\cos A \cos B & =\frac{1}{2}(2 \cos A \cos B)=\frac{1}{2}(\cos (A-B)+\cos (A+B))
\end{aligned}
$$

As a result, if we consider any two integers $m$ and $n$, then for $m \neq n$, we have

$$
\begin{aligned}
& \int_{-\pi}^{\pi} \sin m x \cos n x d x=\frac{1}{2} \int_{-\pi}^{\pi}(\sin (m+n) x+\sin (m-n) x) d x=\frac{1}{2}\left(-\left[\frac{\cos (m+n) x}{m+n}\right]_{x=-\pi}^{x=+\pi}-\left[\frac{\cos (m-n) x}{m-n}\right]_{x=-\pi}^{x=+\pi}\right)=0 \\
& \int_{-\pi}^{\pi} \sin m x \sin n x d x=\frac{1}{2} \int_{-\pi}^{\pi}(\cos (m-n) x-\cos (m+n) x) d x=\frac{1}{2}\left(\left[\frac{\sin (m-n) x}{m-n}\right]_{x=-\pi}^{x=+\pi}-\left[\frac{\sin (m+n) x}{m+n}\right]_{x=-\pi}^{x=+\pi}\right)=0 \\
& \int_{-\pi}^{\pi} \cos m x \cos n x d x=\frac{1}{2} \int_{-\pi}^{\pi}(\cos (m-n) x+\cos (m+n) x) d x=\frac{1}{2}\left(\left[\frac{\sin (m-n) x}{m-n}\right]_{x=-\pi}^{x=+\pi}+\left[\frac{\sin (m+n) x}{m+n}\right]_{x=-\pi}^{x=+\pi}\right)=0
\end{aligned}
$$

On the other hand, for $m=n$, we get

$$
\begin{aligned}
\int_{-\pi}^{\pi} \sin n x \cos n x d x & =\frac{1}{2} \int_{-\pi}^{\pi} \sin (2 n x) d x=-\frac{1}{4 n}[\cos (2 n x)]_{x=-\pi}^{x=+\pi}=-\frac{1}{4 n}[\cos (2 n \pi)-\cos (-2 n \pi)]=0, \\
\int_{-\pi}^{\pi} \sin ^{2} n x d x & =\frac{1}{2} \int_{-\pi}^{\pi}(1-\cos (2 n x)) d x=\frac{1}{2} 2 \pi-\frac{1}{2}\left[\frac{\sin (2 n x)}{2 n}\right]_{x=-\pi}^{x=+\pi}=\pi-\frac{1}{4 n}(0+0)=\pi, \\
\int_{-\pi}^{\pi} \cos ^{2} n x d x & =\frac{1}{2} \int_{-\pi}^{\pi}(1+\cos (2 n x)) d x=\frac{1}{2} 2 \pi+\frac{1}{2}\left[\frac{\sin (2 n x)}{2 n}\right]_{x=-\pi}^{x=+\pi}=\pi+\frac{1}{4 n}(0+0)=\pi .
\end{aligned}
$$

Now, if we denote the total square error as $E=\int_{-\pi}^{\pi}(f(x)-\widehat{f}(x))^{2} d x$, then to make $E$ minimum (or "least"), we need

$$
\begin{aligned}
& \frac{\partial E}{\partial a_{0}}=0 \\
\Rightarrow & \frac{\partial}{\partial a_{0}} \int_{-\pi}^{\pi}(f(x)-\widehat{f}(x))^{2} d x=\int_{-\pi}^{\pi} \frac{\partial}{\partial a_{0}}(f(x)-\widehat{f}(x))^{2} d x=2 \int_{-\pi}^{\pi}(f-\hat{f})(-\underbrace{\frac{\partial \widehat{f}}{\partial a_{0}}}_{1}) d x=0 \\
\Rightarrow & \int_{-\pi}^{\pi} \widehat{f}(x) d x=\int_{-\pi}^{\pi} f(x) d x \\
\Rightarrow & a_{0} \int_{-\pi}^{\pi} d x+\sum_{k=1}^{n}(a_{k} \underbrace{\int_{-\pi}^{\pi} \cos k x d x}_{0}+b_{k} \underbrace{\int_{-\pi}^{\pi} \sin k x d x}_{0})=\int_{-\pi}^{\pi} f(x) d x \\
\Rightarrow & a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \frac{\partial E}{\partial a_{k}}=0 \\
\Rightarrow & \frac{\partial}{\partial a_{k}} \int_{-\pi}^{\pi}(f(x)-\widehat{f}(x))^{2} d x=\int_{-\pi}^{\pi} \frac{\partial}{\partial a_{k}}(f(x)-\widehat{f}(x))^{2} d x=2 \int_{-\pi}^{\pi}(f-\widehat{f})(-\underbrace{\frac{\partial \widehat{f}}{\partial a_{k}}}_{\cos k x}) d x=0 \\
\Rightarrow & \int_{-\pi}^{\pi} \widehat{f}(x) \cos k x d x=\int_{-\pi}^{\pi} f(x) \cos k x d x \\
\Rightarrow & a_{0} \underbrace{\int_{-\pi}^{\pi} \cos k x d x}_{0}+\sum_{j=1}^{n}(a_{j} \underbrace{\int_{-\pi}^{\pi} \cos j x \cos k x d x}_{=\pi \text { for } j=k, \text { else }=0}+\underbrace{}_{j} \underbrace{\int_{-\pi}^{\pi} \sin j x \cos k x d x}_{0})=\int_{-\pi}^{\pi} f(x) \cos k x d x \\
\Rightarrow & a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k x d x,
\end{aligned}
$$

and

$$
\begin{aligned}
& \frac{\partial E}{\partial b_{k}}=0 \\
\Rightarrow & \frac{\partial}{\partial b_{k}} \int_{-\pi}^{\pi}(f(x)-\widehat{f}(x))^{2} d x=\int_{-\pi}^{\pi} \frac{\partial}{\partial b_{k}}(f(x)-\widehat{f}(x))^{2} d x=2 \int_{-\pi}^{\pi}(f-\widehat{f})(-\underbrace{\frac{\partial \widehat{f}}{\partial b_{k}}}_{\sin k x}) d x=0 \\
\Rightarrow & \int_{-\pi}^{\pi} \widehat{f}(x) \sin k x d x=\int_{-\pi}^{\pi} f(x) \sin k x d x \\
\Rightarrow & a_{0} \underbrace{\int_{-\pi}^{\pi} \sin k x d x}_{0}+\sum_{j=1}^{n}(a_{j} \underbrace{\int_{-\pi}^{\pi} \cos j x \sin k x d x}_{0}+\underbrace{\int_{-\pi}^{\pi} \sin j x \sin k x d x}_{j})=\int_{-\pi}^{\pi} f(x) \sin k x d x \\
\Rightarrow & b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin k x d x .
\end{aligned}
$$

(b) For $f(x)=e^{x}$, from part (a), we get

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{x} d x=\frac{1}{2 \pi}\left[e^{x}\right]_{x=-\pi}^{x=+\pi}=\frac{1}{2 \pi}\left(e^{\pi}-e^{-\pi}\right) .
$$

Next, from part (a), we have

$$
\begin{aligned}
a_{k} & =\frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \cos k x d x \\
& =\frac{1}{\pi}\left(\left[e^{x} \frac{\sin k x}{k}\right]_{x=-\pi}^{x=+\pi}-\int_{-\pi}^{\pi} e^{x} \frac{\sin k x}{k} d x\right) \quad \quad \text { (by doing integration by parts) } \\
& =\frac{1}{\pi}\left(\left[e^{x} \frac{\sin k x}{k}+e^{x} \frac{\cos k x}{k^{2}}\right]_{x=-\pi}^{x=+\pi}-\frac{1}{k^{2}} \int_{-\pi}^{\pi} e^{x} \cos k x d x\right) \quad \text { (by doing integration by parts again) } \\
& =\frac{1}{\pi k^{2}}\left[e^{x}(k \sin k x+\cos k x)\right]_{x=-\pi}^{x=+\pi}-\frac{1}{k^{2}} \underbrace{\frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \cos k x d x}_{a_{k}} \\
\Rightarrow\left(1+\frac{1}{k^{2}}\right) a_{k} & =\frac{1}{\pi k^{2}}(e^{\pi}(\underbrace{k \sin k \pi}_{0}+\cos k \pi)-e^{-\pi}(\underbrace{-k \sin k \pi}_{0}+\cos k \pi)) \\
\Rightarrow a_{k} & =\frac{\cos k \pi}{\pi\left(k^{2}+1\right)}\left(e^{\pi}-e^{-\pi}\right)=\frac{(-1)^{k}}{\pi\left(k^{2}+1\right)}\left(e^{\pi}-e^{-\pi}\right) .
\end{aligned}
$$

Similarly, we get $b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{x} \sin k x d x=\frac{1}{\pi\left(k^{2}+1\right)}\left[-k e^{x} \cos k x+e^{x} \sin k x\right]_{x=-\pi}^{x=+\pi}=-\frac{k(-1)^{k}}{\pi\left(k^{2}+1\right)}\left(e^{\pi}-e^{-\pi}\right)$.
(c) Combining the expressions for $a_{0}, a_{k}$, and $b_{k}$ from part (b), we arrive at

$$
\widehat{f}(x)=\frac{e^{\pi}-e^{-\pi}}{\pi}\left[\frac{1}{2}+\sum_{k=1}^{n} \frac{(-1)^{k}}{\left(k^{2}+1\right)}(\cos k x-k \sin k x)\right] .
$$

The plots, generated from the MATLAB file HW6Problem1c.m, are shown below. The figure shows that keeping more terms (large $n$ ) in the least square approximate function $\widehat{f}(x)$ introduces unwanted oscillations, while the true function $f(x)$ is monotone increasing.


Figure 1: The true function $f(x)=e^{x}$, and its three least square approximations $\widehat{f}(x)$, for $n=1,2,5$.

## Problem 2

## Spline interpolation <br> $$
(5+10+30=45 \text { points })
$$

(a) Determine if the following function $S_{1}(x)$ is a linear spline or not. Why/why not?

$$
S_{1}(x)= \begin{cases}x, & -1 \leq x \leq 0.5 \\ 0.5+2(x-0.5), & 0.5 \leq x \leq 2 \\ x+1.5, & 2 \leq x \leq 4\end{cases}
$$

(b) Determine the values of $a, b, c$, if possible, such that the following becomes a cubic spline. Show all the steps in your calculation.

$$
S_{3}(x)= \begin{cases}4+a x+2 x^{2}-\frac{1}{6} x^{3}, & 0 \leq x \leq 1 \\ 1-\frac{4}{3}(x-1)+b(x-1)^{2}-\frac{1}{6}(x-1)^{3}, & 1 \leq x \leq 2 \\ 1+c(x-2)+(x-2)^{2}-\frac{1}{6}(x-2)^{3}, & 2 \leq x \leq 3\end{cases}
$$

(c) Write a C++ code for spline interpolation. Your code should have a function called InterpSpline that will take the datapoints $\left(x_{i}, y_{i}\right)$ and the degree of spline ( 1 for linear spline, 3 for cubic spline etc.) as input, and would return the vector of coefficients of spline polynomials. Write another function InterpPoly that only takes the datapoints $\left(x_{i}, y_{i}\right)$ as input and returns a single interpolating polynomial over these data.

Use your code to do the linear spline, cubic spline, and polynomial interpolations of the monthly average high temperature data, measured at an airport, from January through December, as shown below.

| Month | Average high Temp. |
| :---: | :---: |
| 1 | 54.6 |
| 2 | 54.4 |
| 3 | 67.1 |
| 4 | 78.3 |
| 5 | 85.3 |
| 6 | 88.7 |
| 7 | 96.9 |
| 8 | 97.6 |
| 9 | 84.1 |
| 10 | 80.1 |
| 11 | 68.8 |
| 12 | 61.1 |

Submit a plot for the linear spline, cubic spline, and the polynomial interpolants computed from your code, with the datapoints clearly marked. Also submit a hard copy of your code.

## Solution

(a) Yes, $S_{1}(x)$ is a linear spline.

We have three intervals. Let us denote the line segments as $S_{11}(x), S_{12}(x)$ and $S_{13}(x)$ over the first, second and third interval, respectively. $S_{1}(x)$ is a linear spline because it satisfies continuity at the knot points (where two different line segments meet). In other words, $S_{11}(0.5)=0.5=0.5+2(0.5-0.5)=S_{12}(0.5)$, and $S_{12}(2)=$ $0.5+2(2-0.5)=2+1.5=S_{13}(2)$.
(b) Let $S_{31}(x), S_{32}(x)$ and $S_{33}(x)$ be the cubic polynomials over the first, second and third interval, respectively. For $S_{3}(x)$ to be a cubic spline, we must have continuity: $S_{31}(1)=S_{32}(1)$, and $S_{32}(2)=S_{33}(2)$. In addition, we must match slopes: $S_{31}^{\prime}(1)=S_{32}^{\prime}(1)$, and $S_{32}^{\prime}(2)=S_{33}^{\prime}(2)$. Furthermore, we must match curvatures (second derivatives) $S_{31}^{\prime \prime}(1)=S_{32}^{\prime \prime}(1)$, and $S_{32}^{\prime \prime}(2)=S_{33}^{\prime \prime}(2)$.

From $S_{31}(1)=S_{32}(1)$, we get $a=-\frac{29}{6}$. From $S_{32}(2)=S_{33}(2)$, we get $b=\frac{3}{2}$. From $S_{31}^{\prime}(1)=S_{32}^{\prime}(1)$, we get $a=-\frac{29}{6}$ again. From $S_{32}^{\prime}(2)=S_{33}^{\prime}(2)$, we get $c=\frac{7}{6}$. From $S_{31}^{\prime \prime}(1)=S_{32}^{\prime \prime}(1)$, we get $b=\frac{3}{2}$ again. From $S_{32}^{\prime \prime}(2)=S_{33}^{\prime \prime}(2)$, we get $b=\frac{3}{2}$ yet again. So for $a=-\frac{29}{6}, b=\frac{3}{2}$, and $c=\frac{7}{6}$, all necessary conditions are met for $S_{3}(x)$ to be a cubic spline.
(c) The plot is shown below. As expected, the ( $11^{\text {th }}$ degree) polynomial interpolation shows oscillations, but the splines don't. This plot is generated using the C++ code HW6problem2c.cpp (attached) that takes the file input HW6problem2cData. dat (attached). When you execute the $\mathrm{C}++$ code (with $\mathrm{n}=3$, and nInterp $=1000$ ), it outputs three data files, which are then called by the MATLAB file HW6problem2c_PlotCplusplusData.m (attached) for plotting.


Figure 2: The datapoints (black circles) plotted with polynomial (red dashed), linear spline (blue solid) and cubic spline (green dash dotted) interpolants.

It is possible (but you were not asked to) to solve this entire problem in MATLAB, by simply running the file HW6problem2c.m (attached).

## Problem 3

Bezier curve and B-spline

A B-spline curve segment is given by the following control points:

$$
P_{0}=(-1,-1), \quad P_{1}=(1,-1), \quad P_{2}=(1,1), \quad P_{3}=(-1,1) .
$$

(a) Find the Bezier control points that will produce the same curve segment. Show all your
calculations.

## (b) Submit a plot of the curve segment.

## Solution

(a) Let us denote the B-spline curve as $B S(u)$ and the Bezier curve as $B Z(u)$. We would like to find Bezier control points $Q_{0}=\left(x_{0}, y_{0}\right), Q_{1}=\left(x_{1}, y_{1}\right), Q_{2}=\left(x_{2}, y_{2}\right)$, and $Q_{3}=\left(x_{3}, y_{3}\right)$, such that $B S(u)=B Z(u)$.

First, we write $B S(u)$ and $B Z(u)$ in terms of their respective basis functions.

$$
\begin{aligned}
B S(u) & =b_{-1}(u) P_{0}+b_{0}(u) P_{1}+b_{1}(u) P_{2}+b_{2}(u) P_{3}, \\
B Z(u) & =B_{3,0}(u) Q_{0}+B_{3,1}(u) Q_{1}+B_{3,2}(u) Q_{2}+B_{3,3}(u) Q_{3},
\end{aligned}
$$

where the B-spline basis functions are (as in slide \# 29, ch-3-b)

$$
b_{-1}(u)=\frac{(1-u)^{3}}{6}, \quad b_{0}=\frac{u^{3}}{2}-u^{2}+\frac{2}{3}, \quad b_{1}=\frac{1}{2}\left(-u^{3}+u^{2}+u+\frac{1}{3}\right), \quad b_{2}=\frac{u^{3}}{6}
$$

and the Bezier basis functions are (Bernstein polynomials $B_{n, k}(u)=\frac{n!}{k!(n-k)!} u^{k}(1-u)^{n-k}$, see slides \# 12 and 14, ch-3-b)

$$
B_{3,0}(u)=(1-u)^{3}, \quad B_{3,1}(u)=3 u(1-u)^{2}, \quad B_{3,2}(u)=3 u^{2}(1-u), \quad B_{3,3}(u)=u^{3} .
$$

To get $B S(u)=B Z(u)$, we must have $B S_{x}(u)=B Z_{x}(u)$ (x-coordinate match) and $B S_{y}(u)=B Z_{y}(u)$ (ycoordinate match). This means

$$
\begin{aligned}
-b_{-1}(u)+b_{0}(u)+b_{1}(u)-b_{2}(u) & =B_{3,0}(u) x_{0}+B_{3,1}(u) x_{1}+B_{3,2}(u) x_{2}+B_{3,3}(u) x_{3} \\
-b_{-1}(u)-b_{0}(u)+b_{1}(u)+b_{2}(u) & =B_{3,0}(u) y_{0}+B_{3,1}(u) y_{1}+B_{3,2}(u) y_{2}+B_{3,3}(u) y_{3}
\end{aligned}
$$

The above equations, after substituting the basis functions in both sides, result

$$
\begin{aligned}
0 u^{3}-u^{2}+u+\frac{2}{3} & =\left(-x_{0}+3 x_{1}-3 x_{2}+x_{3}\right) u^{3}+\left(3 x_{0}-6 x_{1}+3 x_{2}\right) u^{2}+\left(-3 x_{0}+3 x_{1}\right) u+x_{0} \\
-\frac{2}{3} u^{3}+u^{2}+u-\frac{2}{3} & =\left(-y_{0}+3 y_{1}-3 y_{2}+y_{3}\right) u^{3}+\left(3 y_{0}-6 y_{1}+3 y_{2}\right) u^{2}+\left(-3 y_{0}+3 y_{1}\right) u+y_{0}
\end{aligned}
$$

Equating the coefficients of monomials in $u$ from both sides, we get

$$
Q_{0}=\left(\frac{2}{3},-\frac{2}{3}\right), Q_{1}=\left(1,-\frac{1}{3}\right), Q_{2}=\left(1, \frac{1}{3}\right), Q_{3}=\left(\frac{2}{3}, \frac{2}{3}\right)
$$

(b) The curve segment is plotted below with B-spline and Bezier control points. The plot is made with MATLAB code HW6Problem3b.m (attached).


Figure 3: The curve segment (green line), the B-spline control points (blue circles) $P_{0}, P_{1}, P_{2}, P_{3}$, and the Bezier control points (red circles) $Q_{0}, Q_{1}, Q_{2}, Q_{3}$, computed in part (a).

