
Aero 320: Numerical Methods

Homework 4

Name: ..

Due: October 21, 2013

NOTE: All problems, unless explicitly asked to write a code, are to be done by hand (with the help of a

calculator) but you need to show all the steps. Turn in a hard copy of your HW stapled with this as cover

sheet with your name written in the above field. Submit your HW by Monday midnight at Room 201, Reed

McDonald Building. Late submissions or failure to submit in the required format will receive no credit.

Problem 1

LU decomposition (5 + 3 + 2 + 5 + 2 + 6 + 2 = 25 points)

Let A =


2 −2 4

1 −3 1

3 7 5

 , b =


0

−5

7

.

(a) By hand, perform LU decomposition for matrix A. Show all the calculations in exact arith-

metic (i.e. use fractions throughout).

(b) Use your answer in part (a) to compute det(A).

(c) From your answer to part (b), what can you say about the solution for the system of linear

equations given by Ax = b?

(d) Use the LU decomposition from part (a), to solve for vector x such that Ax = b.

(e) A matrix is invertible if it has non-zero determinant. From part (b), does A−1 exist?

(f) If exists, then A−1 can be computed by solving the matrix equation AX = I for square matrix

X, where I is the identity matrix of size same as A. Use the LU decomposition from part (a),

to compute A−1.

(g) From your answer in part (f), find x = A−1b. Compare your result with that found in part

(d). Why (d) is a better algorithm to solve Ax = b than directly computing x = A−1b, even

though det(A) 6= 0?

1

Solution

(a) LU decomposition:
2 −2 4

1 −3 1

3 7 5

 Row 2=Row 2− 1
2Row 1

−−−−−−−−−−−−−−−→


2 −2 4

1
2 −2 −1

3 7 5

 Row 3=Row 3− 3
2Row 1

−−−−−−−−−−−−−−−→


2 −2 4

1
2 −2 −1

3
2 10 −1



Row 3=Row 3−(−5)Row 2−−−−−−−−−−−−−−−−−→


2 −2 4

1
2 −2 −1

3
2 −5 −6

 .

Hence, A = LU , where

L =


1 0 0
1
2 1 0
3
2 −5 1

 , U =


2 −2 4

0 −2 −1

0 0 −6

 .

(b) det(A) = det(LU) = det(L)det(U) = det(U) = 2× (−2)× (−6) = 24.

(c) Since det(A) 6= 0, the system of linear equations Ax = b has unique solution.

(d) First, we solve for Ly = b, using forward substitution. This results y =


0

−5

−18

 . Next, we solve Ux = y,

using backward substitution. This results x =


−5

1

3

 .

(e) Since det(A) 6= 0 (from part (b)), the matrix A−1 exists.

(f) Solving the 3× 3 matrix equation AX = I is same as solving three matrix-vector equations

AX1 = e1, AX2 = e2, AX3 = e3,

where Xi is the ith column of X, and ei is the ith column of I. For example, e1 =


1

0

0

, e2 =


0

1

0

, etc.

We can solve each matrix-vector equation AXi = ei, using LU decomposition of matrix A. Proceeding similar

to part (d), we get X1 =


− 11

12

− 1
12

2
3

, X2 =


19
12

− 1
12

− 5
6

, X3 =


5
12

1
12

− 1
6

. Now, we can stack these columns to write

A−1 =


− 11

12
19
12

5
12

− 1
12 − 1

12
1
12

2
3 − 5

6 − 1
6

.

2

(g) Using the answer from part (f), we perform the matrix-vector multiplication:

A−1b =


− 11

12
19
12

5
12

− 1
12 − 1

12
1
12

2
3 − 5

6 − 1
6




0

−5

7

 =


−95+35

12

5+7
12

25−7
6

 =


−5

1

3

 ,

which is same as the answer we got in part (d). However, part (d) is a better algorithm since there we did

single LU decomposition; but to do A−1b, we had to compute A−1 in part (f), which itself required three LU

decompositions. Thus, computing x = A−1b is three times (for n× n matrix, n times) costlier than solving for x

via direct LU decomposition.

Problem 2

Vector and matrix norms (3+3+4+4+6 = 20 points)

(a) By hand, compute the 1-norm, 2-norm and∞-norm of the vector x = {−
√

3 − 6 4 2}>.

(b) For any n× 1 vector x, the following holds:

‖ x ‖∞ ≤ ‖ x ‖2 ≤ ‖ x ‖1 ≤
√
n ‖ x ‖2 ≤ n ‖ x ‖∞ .

Verify this relation for the vector in part (a).

(c) By hand, compute the 1-norm, 2-norm, ∞-norm, and Frobenius norm of the matrix

M =


3 5 7

2 −6 4

−1 2 8

 .

(d) Consider any n× n orthogonal matrix Q. Compute ‖ Q ‖2, ‖ Q ‖F .

(e) Give examples of matrix A such that (i) ‖ A ‖1<‖ A ‖∞, (ii) ‖ A ‖1=‖ A ‖∞, and (iii)

‖ A ‖1>‖ A ‖∞.

Solution

(a)

‖ x ‖1=
4∑

i=1

|xi| = 12 +
√

3, ‖ x ‖2=

√√√√ 4∑
i=1

x2
i =
√

59, ‖ x ‖∞ = max
i=1,...,4

|xi| = 6.

3

(b) The inequalities hold for our case since

6 ≤
√

59 ≈ 7.6811 ≤ 12 +
√

3 ≈ 13.7321 ≤
√

4×
√

59 = 15.3623 ≤ 4× 6 = 24.

(c)

‖M ‖1= max
j=1,...,3

3∑
i=1

|mij | = max
j=1,...,3

{6, 13, 19} = 19, ‖M ‖∞= max
i=1,...,3

3∑
j=1

|mij | = max
j=1,...,3

{15, 12, 11} = 15,

‖M ‖F =

√√√√ 3∑
i=1

3∑
j=1

m2
ij = 14.4222 (can also be computed as

√
tr(MM>)), ‖M ‖2 =

√
λmax (MM>) = 11.9174.

To obtain the 2-norm, we observe that the characteristic equation for matrix MM> =


83 4 63

4 56 18

63 18 69

 is a

cubic polynomial, which can be solved (by hand/by calculator/by root solving code in earlier assignments) to get

λmax = 11.9174. You may verify your answers with MATLAB commands norm(M,1), norm(M,2), norm(M,inf),

norm(M,’fro’).

(d) For any n × n orthogonal matrix Q, we know QQ> = I. Hence, ‖ Q ‖2 =
√
λmax (QQ>) =

√
λmax (I) = 1.

Similarly, ‖ Q ‖F =
√

tr (QQ>) =
√

tr (I) =
√
n.

(e) (i) Let A =

1 2

3 4

. Then ‖ A ‖1= 6 <‖ A ‖∞= 7. (ii) Let A =

1 2

2 4

. Then ‖ A ‖1=‖ A ‖∞= 6. This

will happen for any symmetric matrix. (iii) Let A =

1 3

2 4

. Then ‖ A ‖1= 7 >‖ A ‖∞= 6.

Problem 3

Condition number and ill-conditioned problems (11 + 5 + (5 + 3 + 1) = 25 points)

The condition number κ∗ (A) of a matrix A, is defined as κ∗ (A) =‖ A ‖∗‖ A−1 ‖∗, where ∗ is any

matrix norm. For example, if we use 2-norm of matrix, then we get κ2 (A) =‖ A ‖2‖ A−1 ‖2, etc.

A system of linear equations of the form Ax = b, is said to be ill-conditioned if small changes in

A or b produce large changes in the solution x.

(a) Consider solving Ax = b, where A =


5 7 6 5

7 10 8 7

6 8 10 9

5 7 9 10

. You may verify that det (A) = 1,

4

and hence there is unique solution. Using your favorite method (Gauss elimination or LU)

solve for x when (i) b = {23 32 33 31}>, (ii) b = {22.9 32.1 32.9 31.1}>, (iii) b =

{22.99 32.01 32.99 31.01}>. Try to compute your answers as accurately as you can. What

do you think is happening?

(b) Compute κ∞ (A) for the matrix in part (a).

(c) A Hilbert matrix H of size n×n has entries: Hij =
1

i+ j − 1
. Write a C++ code to compute

κ2 (H) for n = 2, 4, 8, 16, 32. Submit a hard copy of your code, and a plot of κ2 (H) versus n.

What is your conclusion from this plot?

Solution

(a) Use any method (Gauss elimination or LU decomposition) in exact arithmetic, to get the solution as: (i)

x = {1 1 1 1}>, (ii) x = {−7.2 6 2.9 0.1}>, (iii) x = {0.18 1.5 1.19 0.89}>. We see that small

changes in vector b cause large changes in the solution x, meaning the system of equations given by Ax = b, is

ill-conditioned.

(b) Using LU decomposition for matrix A, as in Problem 1(f), we can compute A−1 =


68 −41 −17 10

−41 25 10 −6

−17 10 5 −3

10 −6 −3 2

.

Then, we have ‖ A ‖∞= 33, and ‖ A−1 ‖∞= 136. Hence, κ∞ (A) =‖ A ‖∞‖ A−1 ‖∞= 33 × 136 = 4488. Notice

that this number κ∞ (A) is much larger than 1, implying the system of equations of the form Ax = b will be

ill-conditioned, a fact that we already verified in part (a).

(c) See code attached. Run the C++ code (Homework4Problem3c.cpp file) followed by the MATLAB code

(HW4Problem3c.m file). The conclusion from the plot is this: larger the dimension, more ill-conditioned the

Hilbert matrix is.

Figure 1: Condition number κ2(H) of Hilbert matrix H computed in different ways: numerical on left, and exact

arithmetic on right. See the MATLAB code for details on the methods. All plots confirm the trend that the

Hilbert matrix becomes more ill-conditioned as the size of the matrix increases.

5

It can be observed that there are significant numerical errors (orders of magnitude mismatch) for this approach

of Hilbert matrix construction in C++, followed by numerical inversion or eigenvalue solving in MATLAB. The

question then becomes: how can we write a C++ code that will be as close to the analytical answer (hilb and

invhilb implementations in MATLAB), as possible. The file HilbCond2.cpp achieves this by implementing power

iteration for maximum eigenvalue (similar to Lab 12). This C++ code outputs the data file HilbertCond2.dat,

that lists the condition number κ2(H) for different n. Notice how close this gets to MATLAB’s prediction.

Since the real trick is in computing the 2-norm, below we compare the norms between MATLAB’s analytical

implementation with answers obtained from HilbCond2.cpp.

n ‖ H ‖2 from norm(hilb(n),2)

HilbCond2.cpp from MATLAB

2 1.26759 1.2676

4 1.50019 1.5002

8 1.69569 1.6959

16 1.85882 1.8600

32 1.99459 1.9984

n ‖ H−1 ‖2 from norm(invhilb(n),2)

HilbCond2.cpp from MATLAB

2 15.2105 15.2111

4 1.0341× 104 1.0341× 104

8 8.99653× 109 8.9965× 109

16 1.08726× 1022 1.0873× 1022

32 1.37198× 1046 2.3752× 1046

Problem 4

Jacobi and Gauss-Seidel iteration (10 + 4 + 4 + 4 + 8 = 30 points)

In this exercise, you will see that for some problems, Jacobi method may converge with any

initial guess, but the Gauss-Seidel method may fail.

(a) First, write C++ codes to iteratively solve the system of linear equations Ax = b using

Jacobi method and Gauss-Seidel method. If the kth iterate is the vector xk, then the convergence

condition is that the 2-norm relative error becomes less than the tolerance ε = 10−4, that is:

‖ Axk − b ‖2
‖ b ‖2

< ε.

Define the maximum number of iterations to be 500 to stop the code in case it diverges. Submit

the hard copies for your codes.

(b) Test your codes in part (a), for A =


3 −5 2

5 4 3

2 5 3

, and b =


1

1

1

. Start with initial guess

x0 =


0

0

0

. Report, if possible, the number of iterations needed for each method to converge.

(c) How does your answer to part (b) change if we modify the convergence criterion to be

6

‖ Axk − b ‖∞
‖ b ‖∞

< ε? Explain the change, if any, you observe, compared to part (b).

(d) Repeat part (c) with the convergence criterion
‖ Axk − b ‖1
‖ b ‖1

< ε.

(e) For part (b), (c), (d) above, plot the corresponding relative error versus iteration number k

on the same figure.

Solution

See code attached. For the attached code, the convergence results are as follows:

Convergence criteria Jacobi method Gauss-Seidel method

1-norm 500 iterations Diverges

2-norm 500 iterations Diverges

∞-norm 85 iterations Diverges

50 100 150 200 250 300 350 400 450 500

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Iteration Number (k)

R
el

at
iv

e
er

ro
r

||
A

x k −
 b

 ||
 /

||
b

||

1−norm relative error
2−norm relative error
∞−norm relative error

Figure 2: Convergence of Jacobi iteration in Problem 4 with different norm based relative error criteria.

Figure 3: Convergence of Gauss-Seidel iteration in Problem 4 with different norm based relative error criteria.

7

