
Aero 320: Numerical Methods

Homework 2

Name: ..........................................................................................................

Due: September 24, 2013

NOTE: All problems are to be done by hand (with the help of a calculator) but you need to show all the

steps. Turn in a hard copy of your HW stapled with this as cover sheet with your name written in the above

field. Submit your HW in the lab next Tuesday. Late submissions or failure to submit in the required format will

receive no credit.

Problem 1

More on round-off error

The Taylor series of degree n for exp(x) is
n∑

j=1

xj

j!
. Use this polynomial and rounding-off to three

digits, to find an approximate value of exp(−5) using

(a) exp (−5) ≈
9∑

j=1

(−5)j

j!
=

9∑
j=1

(−1)j 5j

j!
,

(b) exp (−5) =
1

exp(5)
≈ 1

9∑
j=1

5j

j!

.

The exact value of exp(−5), correct to three digits, is 6.74 × 10−3. Which formula (a) or (b)

gives more accurate result? Why?

Solution

Unfortunately, there was a typo in this problem. The Taylor series summation should start from j = 0, instead

of j = 1. You will receive full credit if you attempt this problem.
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From (a),

exp (−5) ≈
9∑

j=0

(−1)j 5j

j!
= 1− 5 +

25
2
− 125

6
+

625
24
− 3125

120
+

15625
720

− 78125
5040

+
390625
40320

− 1953125
362880

≈ 1− 5 + 12.5− 20.8 + 26.0− 26.0 + 21.7− 15.5 + 9.69− 5.38

= −1.79.

From (b),

exp (−5) ≈ 1
9∑

j=0

5j

j!

=
1

143.35
≈ (up to three significant digits) 0.00697 = 6.97× 10−3.

Clearly, part (b) produces more accurate answer. Since both approximations use 10 terms in the Taylor series,

both (a) and (b) have same truncation error. However, (a) produces more round-off error since the approximating

Taylor series have terms with alternate signs and 3 digit round-off error affects each term. On contrary, the Taylor

series in part (b) has all positive signs and appear in the denominator. So the formula (b) is less affected by the

accumulation of round-off errors.

Notice that if the Taylor summation started indeed from j = 1 (as appeared in the problem statement due to

the typo), then you would get the opposite conclusion, i.e. part (a) would give better approximation than part

(b).

Problem 2

(Problem # 10, p. 67) Convergence of secant versus bisection method

Explain why the secant method (see p. 39) usually converges to a given stopping tolerance faster

than bisection.

Solution

For bisection method, en = |xn − x| ≤
b− a

2n
. As n → ∞,

b− a
2n

→ 0, and hence en → 0, meaning the bisection

method always converges, no matter what nonlinear equation f(x) = 0 we are solving for (the error estimate is

independent of the nonlinear function f(x)). Further,
en+1

en
6

1
2

. Hence, αbisection = 1, and λbisection = 1
2 . In

other words, bisection method has linear convergence.

It can be shown that the secant method has super-linear convergence, i.e. 1 < αsecant < 2, meaning the error

en in secant method converges faster than linear, but slower than quadratic. More specifically, it can be proved

that αsecant =
√

5 + 1
2

≈ 1.618. This number is called the Golden ratio. Further, if we assume that x is the root,

and f ′ (x) , f ′′ (x) 6= 0, then

λsecant ≈
∣∣∣∣ f ′′ (x)
2f ′ (x)

∣∣∣∣
√

5−1
2

.

Since the secant method error decays faster than linear, hence it usually reaches the error tolerance faster than

bisection method. You do not need to derive the value of αsecant and λsecant for this homework.
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Problem 3

(Problem # 15, p. 67) Newton’s method for finding nth root of a number

Applying Newton’s method to the equation x2 = N , gives the following algorithm to compute

the square root of N (Problem # 14, p. 67):

xn+1 =
1

2

(
xn +

N

xn

)
.

(a) Find an algorithm for getting the cubic and quartic roots of N that have a similar form to

the one above for the square root. Can you generalize your answer for the nth root?

(b) Starting with x0 = 2, perform 3 Newton iterations to find 31/3. Compare your result with

the actual value of 31/3 (use your calculator), and determine the number of significant digits in

your answer.

Solution

To avoid confusion, let us use the symbol k as the iteration index for Newton’s method, i.e. write

xk+1 = xk −
f (xk)
f ′ (xk)

.

(a) For cubic root, the nonlinear equation to solve is f (x) = x3 − N = 0, f ′ (x) = 3x2. Hence, the Newton’s

iteration becomes

xk+1 = xk −
x3

k −N
3x2

k

= xk −
xk

3
+

N

3x2
k

=
1
3

(
2xk +

N

x2
k

)
.

For quartic root, the nonlinear equation to solve is f (x) = x4 − N = 0, f ′ (x) = 4x3. Hence, the Newton’s

iteration becomes

xk+1 = xk −
x4

k −N
4x3

k

= xk −
xk

4
+

N

4x3
k

=
1
4

(
3xk +

N

x3
k

)
.
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In general, to find the nth root, we need to solve the equation f (x) = xn −N = 0, f ′ (x) = nxn−1. Hence, the

Newton’s iteration becomes

xk+1 = xk −
xn

k −N
nxn−1

k

= xk −
xk

n
+

N

nxn−1
k

=
1
n

(
(n− 1)xk +

N

xn−1
k

)
.

(b) To solve x = 31/3 is same as solving x3 − 3 = 0. Thus, N = 3 in this case. From part (a), the Newton

iteration for this case becomes

xk+1 =
1
3

(
2xk +

3
x2

k

)
, with initial guess x0 = 2.

Hence, x1 =
1
3

(
4 +

3
4

)
=

4.75
3
≈ 1.5833, up to 5 significant digits. Similarly, x2 =

1
3

(
2× 1.5833 +

3
(1.5833)2

)
≈

1.4544, up to 5 significant digits. Next, x3 =
1
3

(
2× 1.4544 +

3
(1.4544)2

)
≈ 1.4424, up to 5 significant digits.

The exact value of 3
1
3 (verify this from your calculator), is 1.44225 (this has six significant digits). If we keep

up to 5 significant digits, then its value is 1.4422.

Problem 4

(Problem # 36, p. 69) Fixed point method

Most equations of the form f (x) = 0 can be rearranged in the form x = g(x), with which to

begin the fixed-point method. For f (x) = exp(x)−2x2, one possible way to rewrite f (x) = 0 is:

x = ±
√

exp(x)

2
.

(a) Show that this fixed point iteration converges to a root near 1.5 if the positive value is used

and to the root near −0.5 if the negative value is used. (Show 3 iterations).

(b) There is a third root near 2.6. Show that we do not converge to this root even though values

near to the root are used to begin the iterations. Where does it converge if x0 = 2.5? If x0 = 2.7?

(Show 3 iterations).

(c) Find another rearrangement of the form x = g(x), that converges correctly to the third root.

Solution
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(a) First, we show that, the equation x = +

√
exp (x)

2
has a root between 1 and 2. This is same as showing that

the equation f+ (x) = x−
√

exp (x)
2

= 0 has a root between 1 and 2. Notice that

f+ (1) f+ (2) =
(

1−
√
e

2

)(
2− e√

2

)
.

But we know that 2 < e < 3 ⇒ 1 <
e

2
⇒ 1 <

√
e

2
. Hence f+ (1) < 0. On the other hand, 0.693 ≈ ln (2) >

2
3
≈ 0.667. As a result,

3
2

ln (2) > 1 ⇒ ln (2) > 1 − 1
2

ln (2) = ln
(
e√
2

)
⇒ 2 >

e√
2

. Thus, f+(2) > 0. Hence,

f+(x) = 0 has a root between 1 and 2, possibly near 1.5.

Second, we show that, the equation x = −
√

exp (x)
2

has a root between −1 and 0. This is same as showing

that the equation f− (x) = x+

√
exp (x)

2
= 0 has a root between −1 and 0. Notice that

f− (0) =
1√
2
> 0, f− (−1) =

1√
2e
− 1.

Notice that
1
2
< e⇒ 1 < 2e⇒ 1√

2e
< 1⇒ f−(−1) < 0. As a result, f− (0) f− (−1) < 0, meaning f−(x) = 0 has

a root between −1 and 0, possibly near −0.5.

Now, we start the fixed point iterations with x0 = 1. Also, let’s work with 5 significant digits. First, we

consider the fixed point iteration with positive sign, i.e.

xk+1 = +

√
exp (xk)

2
.

Then x1 =

√
exp (1)

2
= 1.1658. Next, x2 =

√
exp (1.1658)

2
= 1.2666. Further, x3 =

√
exp (1.2666)

2
= 1.3321.

If we use the fixed point iteration with negative sign, i.e.

xk+1 = −
√

exp (xk)
2

,

then x1 = −
√

exp (1)
2

= −1.1658. Next, x2 = −
√

exp (−1.1658)
2

= −0.3948. Further, x3 = −
√

exp (−0.3948)
2

=

−0.5804.

(b) We need to show that both the fixed point iterations (with positive and negative sign) will fail to capture the

root near 2.6. For this purpose, it suffices to show that neither f+ (x) = 0, nor f− (x) = 0, has any root around

2.6.

First, notice that e ≈ 2.71, and ln (2) ≈ 0.693. Hence, ln (2) + 2 < e ⇒ ln (2) + 2 ln (e) < e ⇒ 2e2 < ee ⇒

e <

√
ee

2
⇒ e −

√
ee

2
< 0 ⇒ f+ (e) < 0. Also, 18 < e3 ⇒ 9 <

e3

2
⇒ 3 − e3/2

√
2
< 0 ⇒ f+(3) < 0. However, we

have shown in part (a) that f+ (2) > 0. Thus, there is a root for the equation f+(x) = 0, in the interval (2, e);

but no root in (e, 3). You can also confirm this by plotting the function f+(x). You may verify that |f ′+(x)| < 1,

meaning if you choose x0 in this interval, convergence is guaranteed. However, it is not clear from this analysis,

which particular root will you converge to.

On the other hand, f− (2) = 2 +
e√
2
> 0, and f− (3) = 3 +

e3/2

√
2
> 0. Consequently, f− (2) f− (3) > 0. Hence,

the equation f− (x) = 0 has no root between 2 and 3.

5



Now, we start the fixed point iterations with x0 = 2.5. As before, we work with 5 significant digits. First, we

consider the fixed point iteration with positive sign, i.e.

xk+1 = +

√
exp (xk)

2
.

Then x1 = 2.4680, x2 = 2.4289, x3 = 2.3819. Seems like we are going away from the root near 2.6. Indeed, if you

continue, then this iteration yields x120 = 1.4880, meaning we slowly converge toward the root at 1.5.

If we use the fixed point iteration with negative sign, i.e.

xk+1 = −
√

exp (xk)
2

,

then x1 = −2.4680, x2 = −0.2058, x3 = −0.6379. We converge near the root at −0.5.

Now, we start the fixed point iterations with x0 = 2.7, for xk+1 = +

√
exp (xk)

2
. We get x1 = 2.7276,

x2 = 2.7655, x3 = 2.8185. If you continue, then you will find that you actually diverge to +∞.

For x0 = 2.7, but xk+1 = −
√

exp (xk)
2

, we obtain x1 = −2.7276, x2 = −0.1808, x3 = −0.6460. We converge

toward the root at −0.5.

(c) We can rewrite our original equation as

exp (x) = 2x2 ⇒ x = ln
(
2x2
)︸ ︷︷ ︸

g(x)

.

In order to converge, |g′ (x) | < 1⇒
∣∣∣∣ 2x
∣∣∣∣ < 1. In other words, this fixed point iteration will converge if 0 > x0 > −2,

or if x0 > 2. Hence, the domain of convergence is: (−2, 0) ∪ (2,∞). Remember that not all x0 from this domain

may converge to the root near 2.6 (i.e. they may converge to some other root). We just need to show that there

exists at least one x0 ∈ (−2, 0) ∪ (2,∞), such that the fixed point iteration xk+1 = ln
(
2x2

k

)
converges near 2.6.

Let us try x0 = 3. We get x1 = ln
(
2× 32

)
= 2.8904, x2 = ln

(
2× 2.89042

)
= 2.8159, x3 = ln

(
2× 2.81592

)
=

2.7637, etc. Indeed, we are converging towards the root near 2.6.

Problem 5

Newton’s and Halley’s method to solve Kepler’s equation

Kepler’s equation, devised by Johannes Kepler in 1609, rules the propagation of satellites (or

planets) in their orbits. The equation is transcendental:

M = E − ε sin (E)

where M is an angle called mean anomaly, ε is a positive number called orbit eccentricity, and

E is an angle called eccentric anomaly that indicates the location of the satellite in the orbit.

Solving Kepler’s equation means to find E, when M and ε are given.
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Solve the Kepler’s equation using Newton’s and Halley’s method for the following cases.

Use E = M + 1 as the starting point, and the convergence is achieved if the absolute error

≤ 10−6. Also report the number of iterations needed to converge for each case.

(a) ε = 0.2, 0.4, 0.8, for M = 0, 1, 10, 100 degrees.

(b) ε = 0.9999 (orbit almost parabolic), for M = 0.001 degrees (passage close to perigee).

Solution

Use the code sent as the solution of Lab Assignment 7. Convert M in degrees to radian, then

take the initial guess as E (in radian) = M (converted from degree to radian) + 1 radian. Then

start iterating the Kepler’s equation. The E in Kepler’s equation will be computed in radians.

The Grading Rubric for Homework 2

Problem 1: Total = 15 points. Breakdown: part (a) = 5 points; part (b) = 5 points; which

formula = 1 point; why = 4 points.

Problem 2: Total = 5 points.

Problem 3: Total = 20 points. Breakdown: part (a) = 3× 5 = 15 points; part (b) = 5 points

(3 Newton iterations = 3 points, actual value = 1 point, significant digits = 1 point).

Problem 4: Total = 30 points. Breakdown: part (a) = 10 points (proof for root near 1.5 =

2 points, proof for root near −0.5 = 2 points, 3 iterations with positive formula = 3 points, 3

iterations with negative formula = 3 points); part (b) = 10 points (proof that positive formula

fails = 2 points, proof that negative formula fails = 2 points, iterations starting from 2.5 =

(3× 0.5)× 2 = 3 points, iterations starting from 2.7 = (3× 0.5)× 2 = 3 points); part (c) = 10

points (finding rearrangement = 3 points, show that whether it converges at all (|g′(x)| < 1) =

3 points, choose appropriate x0 and running few iterations to demonstrate convergence near 2.6

= 4 points).
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Problem 5: Total = 30 points. Breakdown: correct understanding and problem set up = 4

points; numerical results = (13× 2)× 1 = 26 points.
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