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Abstract— This paper presents an optimal transport theoretic
formulation to assess the controller robustness for F-16 aircraft.
We compare the state regulation performance for a linear
quadratic regulator (LQR) and gain scheduled LQR (gsLQR),
applied to nonlinear longitudinal open-loop dynamics of F-16,
under stochastic initial condition uncertainty. It is shown that
both controllers have comparable immediate and asymptotic
performance, but gsLQR achieves better transient performance
than LQR. Algorithms based on Perron-Frobenius operator, are
given for tractable computation. Numerical results from the
proposed method, are in unison with Monte Carlo simulations.

I. INTRODUCTION

In systems and control, probabilistic robustness [1]–[5] has
emerged as an alternative paradigm to classical worst-case
robustness. The main motivation behind this development
is to overcome: (i) the computational complexity [6]–[8],
and (ii) the inherent conservatism in controller synthesis and
analysis [9], [10]. To assess the performance of these risk-
adjusted controllers, ideas such as robustness degradation
function [2], [11], [12] have been proposed in the literature.
However, numerical implementation of these performance
assessment techniques mostly rely on Monte Carlo like
realization-based algorithms, leading to high computational
cost for implementing them to nonlinear systems.

This is a serious bottleneck in applications like flight
control software certification [13], where the closed loop
dynamics is nonlinear, and linear robustness analysis sup-
ported with Monte Carlo, remains the state-of-the art. Lack
of nonlinear robustness analysis tools, coupled with the
increasing complexity of flight control algorithms, have
caused loss of several F/A-18 aircrafts due to nonlinear
“falling leaf mode” [14], undetectable [15] by linear robust-
ness analysis algorithms. On the other hand, accuracy of
sum-of-squares optimization-based deterministic nonlinear
robustness analysis [13], [14] depends on the quality of
semi-algebraic approximation, and is still computationally
expensive for large-scale nonlinear systems. Thus, there is
a need for controller robustness verification methods, that
does not make any structural assumption on nonlinearity, and
allows scalable computation while accommodating stochastic
uncertainty.

This paper presents computationally efficient algorithms
for nonlinear robustness verification of controllers, in the
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presence of stochastic initial condition uncertainties. We
consider the longitudinal dynamics of F-16, with linear
quadratic regulator and gain-scheduled linear quadratic reg-
ulator. Perron-Frobenius operator based methods are used to
propagate the uncertainties through closed-loop nonlineari-
ties. Wasserstein distance of the instantaneous state ensemble
from trim, is introduced as a measure of controller robust-
ness. The proposed formulation departs from the existing
literature in that both computation and analysis are done
in nonparametric distributional sense. We argue this to be
the main source of computational leverage since the Perron-
Frobenius operator is linear, even though the underlying
state dynamics is nonlinear. Moreover, we demonstrate that
the distributional robustness assessment of the controllers’
performance, lead to further simplification of Wasserstein
computation. The inferences drawn from Wasserstein-based
analysis are shown to be consistent with Monte Carlo pre-
dictions.

Rest of this paper is structured as follows. Section II
describes the nonlinear open loop longitudinal dynamics for
F-16 aircraft. The LQR and gsLQR controller synthesis are
discussed in Section III. Section IV provides the uncertainty
propagation techniques required for the controller verifica-
tion step, detailed in Section V. Additional statistical analysis
are performed in Section IV to provide qualitative insights
about the controllers’ performance, which are then verified
by the quantitative transport theoretic results of Section V.
Section VI concludes the paper.

Notation: Most notations are standard. Symbols x and
u denote the state and control vectors. The state variables
are pitch attitude θ (deg), total velocity V (ft/s), angle-
of-attack α (deg), and pitch rate q (deg/s). The control
variables T and δe denote thrust (lb) and elevator input
(deg), respectively. The symbol diag(·) denotes the diagonal
matrix of appropriate dimensions, supp (·) denotes support
of a function, and U (·) represents the uniform distribution.

II. F-16 FLIGHT DYNAMICS

A. Longitudinal Equations of Motion

The longitudinal equations of motion for F-16 considered
here, follows the model given in [16]–[18], with the ex-
ception that we restrict the maneuver to a constant altitude
(h = 10, 000 ft) flight. Further, the north position state
equation is dropped since no other longitudinal states depend
on it. This results a reduced four state, two input model with



TABLE I
PARAMETERS IN EQN. (1)

Description of parameters Values with dimensions
Mass of the aircraft m = 636.94 slugs
Acceleration due to gravity g = 32.17 ft/s2

Wing planform area S = 300 ft2
Mean aerodynamic chord c = 11.32 ft
Reference x-position of c.g. xref

cg = 0.35 c ft
True x-position of c.g. xcg = 0.30 c ft
Pitch moment-of-inertia Jyy = 55, 814 slug-ft2

Nominal atmospheric density ρ0 = 2.377× 10−3 slugs/ft3

x = (θ, V, α, q)>, u = (T, δe)
>, given by

θ̇ = q, (1a)
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The parameters in eqn. (1) are listed in Table I. Furthermore,
the dynamic pressure q = 1

2ρ (h)V 2, where the atmospheric
density ρ (h) = ρ0

(
1− 0.703× 10−5h

)4.14 = 1.8 × 10−3

slugs/ft3 remains fixed.

B. Aerodynamic Coefficients
The aerodynamic force and moment coefficients CX , CZ ,

and Cm are functions of α and δe, expressed as look-up table
from wind tunnel test data [16]–[18]. Similarly, the stability
derivatives CXq

, CZq
, and Cmq

are table look-up functions
of α. We refer the readers to above references for details.

III. F-16 FLIGHT CONTROL LAWS

In this paper, we consider two controllers: linear quadratic
regulator (LQR) and gain-scheduled linear quadratic regu-
lator (gsLQR), as shown in Fig. 1 and 2, respectively. Both
controllers minimize the infinite-horizon cost functional

J =
∫ ∞

0

(
x>Q x+ u>R u

)
dt, (2)

with Q = diag
(
100, 0.25, 100, 10−4

)
, and R =

diag
(
10−6, 625

)
. Further, the control saturation shown in

the block diagrams, is modeled as

1000 lb 6 T 6 28, 000 lb, −25◦ 6 δe 6 +25◦. (3)

A. LQR Synthesis
The nonlinear open loop plant model was linearized

about xtrim, utrim, using simulink linmod command.
The trim conditions were computed via the nonlinear
optimization package SNOPT [19], and are given by xtrim =(
2.8190 deg, 407.8942 ft/s, 6.1650 deg, 6.8463× 10−4 deg/s

)>
,

utrim = (1000 lb, −2.9737 deg)>. The LQR gain K was
computed for this linearized model.

Fig. 1. Block diagram of LQR closed-loop system.

Fig. 2. Block diagram of gsLQR closed-loop system.

B. Gain-scheduled LQR Synthesis

As shown in Fig. 2, V and α are taken as the scheduling
states. We generate 100 grid points in the box

100 ft/s 6 V 6 1000 ft/s, −10◦ 6 α 6 +45◦, (4)

and compute trim conditions {xjtrim, u
j
trim}100j=1, using SNOPT,

for each of these grid points. Next, we synthesize a sequence
of LQR gains {Kj}100j=1, corresponding to the linearized
dynamics about each trim.

IV. CLOSED-LOOP UNCERTAINTY PROPAGATION

A. Perron-Frobenius Operator

To test the robustness of controller performance, we allow
the initial condition to be a stochastic perturbation from xtrim,
i.e. x0 = xtrim + xpert, where xpert is a random vector from
U
([
θmin

pert, θ
max
pert

]
×
[
V min

pert , V
max

pert

]
×
[
αmin

pert, α
max
pert

]
×
[
qmin

pert , q
max
pert

])
,

where the perturbation range for each state, is listed in
Table II.

Given a joint probability density function (PDF) ϕ0 sup-
ported over x0, we next compute the evolution of joint PDF
ϕ (x(t), t) subject to both LQR and gsLQR closed-loop dy-
namics. The Perron-Frobenius (PF) operator [20] framework
allows us to do this computation in exact arithmetic, as
described below.

TABLE II
ADMISSIBLE STATE PERTURBATION LIMITS

xpert Interval

θpert ∈
[
θmin

pert , θ
max
pert

]
[−35◦,+35◦]

Vpert ∈
[
V min

pert , V
max

pert

]
[−65 ft/s,+65 ft/s]

αpert ∈
[
αmin

pert, α
max
pert

]
[−20◦,+50◦]

qpert ∈
[
qmin

pert , q
max
pert

]
[−70 deg/s,+70 deg/s]



TABLE III
COMPARISON OF JOINT PDF COMPUTATION OVER Rd : MC VS. PF

Attributes MC simulation PF via MOC
Concurrency Offline post-processing Online
Accuracy Histogram approximation Exact arithmetic
Spatial discretization Grid based Meshless
ODEs per sample d d+ 1

1) Liouville PDE formulation: The transport equation as-
sociated with the PF operator, governing the spatio-temporal
evolution of probability mass over the state space, is given
by the stochastic Liouville eqn.

∂ϕ

∂t
= −

4∑
i=1

∂

∂xi
(ϕ fcl) , x (t) ∈ R4, (5)

where fcl (x (t) , t) denotes the closed-loop vector field. Since
(5) is a first-order PDE, it allows method-of-characteristics
(MOC) formulation, which we describe next.

2) Characteristic ODE computation: It can be shown [21]
that the characteristic curves for (5), are the trajectories of the
closed-loop ODE ẋ = fcl (x (t) , t). If the nonlinear vector
field fcl is Lipschitz, then the trajectories are unique, and
hence the characteristic curves are non-intersecting. Thus,
instead of solving the PDE boundary value problem (5), we
can solve the following initial value problem [21], [22]:

ϕ̇ = − (∇ · fcl) ϕ, ϕ (x0, 0) = ϕ0, (6)

along the trajectories x (t). Notice that solving (6) along
one trajectory, is independent of the other, and hence the
formulation is a natural fit for parallel implementation. This
computation differs from Monte Carlo (MC) as shown in
Table III.

Notice that the divergence computation in (6) can be done
analytically offline for our case of LQR and gsLQR closed-
loop systems, provided we obtain function approximations
for aerodynamic coefficients. However, even with analytical
open-loop dynamics, this divergence computation does not
scale for controllers (e.g. RHC) which numerically realize
state-feedback. For these reasons, we implement an alterna-
tive online computation of divergence in this paper. Using
linmod, we linearize the closed-loop systems about each
characteristics, and obtain the instantaneous divergence as
the trace of the time-varying Jacobian matrix.

B. Numerical Results

1) Simulation set up: We generate pseudo-random Halton
sequence [23] in

[
θmin

pert, θ
max
pert

]
×
[
V min

pert , V
max

pert

]
×
[
αmin

pert, α
max
pert

]
×[

qmin
pert , q

max
pert

]
, to sample the uniform distribution ϕpert, and

hence ϕ0 supported on the four dimensional state space.
With 2000 Halton samples for ϕ0, we propagate joint state
PDFs for both LQR and gsLQR closed-loop dynamics via
MOC ODE (6), from t = 0 to 20 seconds, using fourth-order
Runge-Kutta integrator with fixed step-size ∆t = 0.01 s.

We observed that the linmod computation for evaluating
time-varying divergence along each trajectory, takes the most
of computational time. To take advantage of the fact that

computation along characteristics are independent of each
other, all simulations were performed using 12 cores with
NVIDIA R© Tesla GPUs in MATLAB R© environment. It was
noticed that with LQR closed-loop dynamics, the computa-
tional time for single sample from t = 0 to 20 s, is approx.
90 seconds. With sequential for-loops over 2000 samples,
this scales to 50 hours of runtime. The same for gsLQR
scales to 72 hours of runtime. In parallel implementation on
Tesla, MATLAB R© parfor-loops were used to reduce these
runtimes to 4.5 hours (for LQR) and 6 hours (for gsLQR),
respectively.

2) Results: Fig. 3 shows the evolution of univariate
marginal error PDFs. All marginal computations were per-
formed using algorithms previously developed by the authors
[21]. Since ϕ0 and its marginals were uniform, Fig. 3(a)
shows similar trend for small t, and there seems no visible
difference between LQR and gsLQR performance. As t
increases, both LQR and gsLQR error PDFs shrink about
zero. Clearly, by t = 20 s (Fig. 3(d)), both LQR and
gsLQR controllers make the respective state marginals ϕj(t),
j = 1, . . . , 4, converge to the Dirac distribution at xjtrim, and
hence individual error marginals become unit impulses at
their respective zeros. Thus, Fig. 3 qualitatively show that
both LQR and gsLQR exhibit comparable immediate and
asymptotic performance, as far as robustness against initial
condition uncertainty is concerned. However, there are some
visible mismatches in Fig. 3(b) and 3(c), that suggests a
careful quantitative investigation of the transient performance
(Section V).

We can verify the insights obtained from Fig. 3 against
the MC simulations (Fig. 4). Interestingly, Fig. 4(a) shows
that LQR fails to stabilize some initial conditions to xtrim,
while gsLQR is robust for all initial perturbations (Fig. 4(b)).
However, Fig. 5 shows that the failure of LQR controller
is a low-probability event. Hence in risk-aware perspective,
LQR is asymptotically stabilizing in distributional sense, as
predicted by Fig. 3(d). In other words, gsLQR has better
asymptotic performance than LQR, but this improvement
is probabilistically not significant. Furthermore, the most
probable state errors for LQR and gsLQR (top row in Fig.
6) match well, but the corresponding least probable state
errors (bottom row in Fig. 6) have transient mismatch. The
latter also shows that the low-probability divergent LQR
trajectories are not least likely.

V. OPTIMAL TRANSPORT TO TRIM

A. Wasserstein Metric

To provide a quantitative comparison for LQR and gsLQR
controllers’ performance, we need a notion of “distance”
between the respective time-varying state PDFs and the
desired state PDF. Since the controllers strive to bring the
state trajectory ensemble to xtrim, hence we take ϕ∗ (xtrim),
a Dirac delta distribution at xtrim, as our desired joint PDF.
The notion of distance must compare the concentration of
trajectories in the state space and for meaningful inference,
should define a metric. Next, we describe Wasserstein metric,



that meets these axiomatic requirements [24] of “distance”
on the manifold of PDFs.

1) Definition: Consider the metric space (M, `2) and take
x, x̃ ∈M . Let P2 (M) denote the collection of all probability
measures µ supported on M , which have finite 2nd moment.
Then the L2 Wasserstein distance of order 2, denoted as
2W2, between two probability measures ς1, ς2 ∈ P2 (M), is
defined as

2W2 (ς1, ς2) :=
(

inf
µ∈M(ς1,ς2)

∫
M×M

‖ x− x̃ ‖2`2 dµ (x, x̃)
) 1

2

where M (ς1, ς2) is the set of all measures supported on the
product space M × M , with first marginal ς1 and second
marginal ς2.

Intuitively, Wasserstein distance equals the least amount of
work needed to convert one distributional shape to the other,
and can be interpreted as the cost for Monge-Kantorovich
optimal transportation plan [25]. The particular choice of L2

norm with order 2 is motivated in [26]. For notational ease,
we henceforth denote 2W2 as W . One can prove (p. 208,
[25]) that W defines a metric on the manifold of PDFs.

2) Computation of W : In general, one needs to compute
W from its definition, which requires solving a linear pro-
gram (LP) [24] in mn variables, subject to (m+ n+mn)
constraints, with m and n being the cardinality of the
respective scattered data representation of the PDFs un-
der comparison. As shown in [26], the main source of
computational burden stems from storage complexity. It
is easy to verify that the sparse constraint matrix repre-
sentation requires (6mn+ (m+ n) d+m+ n) amount of
storage, while the same for non-sparse representation is
(m+ n) (mn+ d+ 1), where d is the dimension of the
support for each PDF. Notice that d enters linearly through
`2 norm computation, but the storage complexity grows
polynomially with m and n. We observed that with sparse
LP solver MOSEK [27], on a standard computer with 4 GB
memory, one can go up to m = n = 3000 samples. On the
other hand, increasing the number of samples, increases the
accuracy [26] of finite-sample W computation. This leads to
numerical accuracy versus storage capacity trade off.

3) Reduction of storage complexity: For our purpose of
computing W (ϕ (x (t) , t) , ϕ∗ (xtrim)), the storage complex-
ity can be reduced by leveraging the fact that ϕ∗ (xtrim) is a
stationary Dirac distribution. Hence, it suffices to represent
the joint probability mass function (PMF) of ϕ∗ (xtrim) as a
single sample located at xtrim with PMF value unity. This
trivializes the optimal transport problem, since

W (t) , W (ϕ (x (t) , t) , ϕ∗ (xtrim))

=

√√√√ n∑
i=1

‖ xi (t)− xtrim ‖22 γi, (7)

where γi > 0 denotes the joint PMF value at sample xi (t),
i = 1, . . . , n. Consequently, the storage complexity reduces
to (nd+ n+ d), which is linear in number of samples.

B. Numerical Results

We compute the time-evolution of the two Wasserstein
distances

WLQR (t) , W (ϕLQR (x (t) , t) , ϕ∗ (xtrim)) ,
WgsLQR (t) , W (ϕgsLQR (x (t) , t) , ϕ∗ (xtrim)) .

The overall simulation framework is depicted in Fig. 7.
Fig. 8 indeed confirms the qualitative trends, mentioned

in Section IV.B.2, that LQR and gsLQR exhibit comparable
immediate and asymptotic performance. Furthermore, Fig. 8
shows that for t = 3−8 seconds, WLQR is significantly higher
than WgsLQR, meaning the gsLQR joint PDF ϕgsLQR (x(t), t)
is closer to ϕ∗ (xtrim), compared to the LQR joint PDF
ϕLQR (x(t), t). This corroborates well with the mismatch
observed in Fig. 3(c). As time progresses, both WLQR and
WgsLQR converge to zero, meaning the convergence of both
LQR and gsLQR joint PDFs to the Dirac distribution at xtrim.

At this point, we emphasize that the Wasserstein closeness
results are necessary and sufficient since W is a metric,
and it computes the distance between joints. In other words,
Fig. 3 only provides sufficiency results since convergence
of joints imply convergence of marginals, but the converse
is not true. Further, since WLQR (t) → 0 for large t, we
can affirmatively say that the divergent LQR trajectories are
indeed of low-probability. Otherwise, WLQR (t) would show
a steady-state error. Thus, the Wasserstein distance is shown
to be an effective way of comparing the performance of
controllers.

VI. CONCLUSIONS

In this paper, we compare the performance of two con-
trollers, viz. LQR and gsLQR, for F-16 longitudinal dy-
namics with stochastic initial condition uncertainty. We pro-
pose a set of tools for distributional robustness analysis of
these two controllers, based on Perron-Frobenius operator
and Monge-Kantorovich optimal transport. It is shown that
the new framework allows scalable computation for large
nonlinear systems, without making any a-priori structural
assumption about the nonlinearity or uncertainty. We show
that both LQR and gsLQR have comparable immediate and
asymptotic performance, but the transient performance of
gsLQR is found to be more robust than that of the LQR.
These inferences are substantiated with marginal statistics
and Monte Carlo simulation.
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(a) Snapshot at t = 0.01 second.
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(b) Snapshot at t = 1 second.

−300 −200 −100 0
0

0.2

0.4

0.6

0.8

−300 −200 −100 0
0

0.2

0.4

0.6

0.8

−300 −200 −100 0
0

0.2

0.4

0.6

0.8

−50 0 50
0

0.2

0.4

0.6

0.8

(deg) (ft/s)

(deg) (deg/s)
(c) Snapshot at t = 5 seconds.
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Fig. 3. Snapshots of univariate marginal error PDFs for each state, with
LQR (blue, dashed) and gsLQR (red, solid) closed loop dynamics.
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(a) State error vs. time for LQR controller

(b) State error vs. time for gsLQR controller

Fig. 4. MC state error (∆xj (t) , xj (t)−xj
trim, j = 1, . . . , 4) trajectories

for LQR and gsLQR closed-loop dynamics.
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Fig. 5. Time evolution of maximum value of joint PDF ϕLQR (x(t), t) (red
solid) and ϕLQR (x(t), t) along the diverging trajectories (blue dashed),
as seen in Fig. 4(a). Since ϕLQR (x(t), t) along a trajectory increases
exponentially with time, the plots are linear in log-linear scale.
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Fig. 6. Time evolution of the most likely (top row) and least likely (bottom
row) state errors for LQR (blue dashed) and gsLQR (red solid) closed-loop
dynamics.

Fig. 7. Schematic of probabilistic robustness comparison for controllers
based on Wasserstein metric. The “diamond” denotes the Wasserstein
computation by solving the Monge-Kantorovich optimal transport. The
internal details of LQR and gsLQR closed-loop dynamics blocks are as
in Fig. 1 and 2, respectively.
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Fig. 8. Comparison of time histories of W (ϕLQR(t), ϕ∗) (blue dashed,
star) and W

(
ϕgsLQR(t), ϕ∗

)
(red solid, triangle).
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